• [1]
    Götz, F., Peters, G. (2000) Colonization of medical devices by coagulase-negative staphylococci. In: Infections Associated with Indwelling Medical Devices (Waldvogel, F.A., Bisno, A.L., Eds.), pp.55–88 ASM, Washington, DC.
  • [2]
    Mah, T.F., O'Toole, G.A. (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 3439.
  • [3]
    Stewart, P.S., Costerton, J.W. (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358, 135138.
  • [4]
    Beenken, K.E., Dunman, P.M., McAleese, F., Macapagal, D., Murphy, E., Projan, S.J., Blevins, J.S., Smeltzer, M.S. (2004) Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 186, 46654684.
  • [5]
    Resch, A., Rosenstein, R., Nerz, C., Götz, F. (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl. Environ. Microbiol. 71, 26632676.
  • [6]
    W.M. Dunne Jr. E.O. Mason Jr., Kaplan, S.L. (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 37, 25222526.
  • [7]
    Stanley, N.R., Britton, R.A., Grossman, A.D., Lazazzera, B.A. (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185, 19511957.
  • [8]
    Webb, J.S., Givskov, M., Kjelleberg, S. (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr. Opin. Microbiol. 6, 578585.
  • [9]
    Webb, J.S., Lau, M., Kjelleberg, S. (2004) Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186, 80668073.
  • [10]
    Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., Greenberg, E.P. (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860864.
  • [11]
    Webb, J.S., Thompson, L.S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M., Kjelleberg, S. (2003) Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185, 45854592.
  • [12]
    Miller, H.I., Kirk, M., Echols, H. (1981) SOS induction and autoregulation of the himA gene for site-specific recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 78, 67546758.
  • [13]
    Gilbert, P., Collier, P.J., Brown, M.R. (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob. Agents Chemother. 34, 18651868.
  • [14]
    Brown, M.R., Allison, D.G., Gilbert, P.P. (1988) Resistance of bacterial biofilms to antibiotics: a growth-rate related effect. J. Antimicrob. Chemother. 22, 777780.
  • [15]
    Iandolo, J.J., Worrell, V., Groicher, K.H., Qian, Y., Tian, R., Kenton, S., Dorman, A., Ji, H., Lin, S., Loh, P., Qi, S., Zhu, H., Roe, B.A. (2002) Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289, 109118.
  • [16]
    Båchi, B. (1980) Physical mapping of the Bgl I, Bgl II, PstI and Eco RI restriction fragments of staphylococcal phage phi 11 DNA. Mol. Gen. Genet. 180, 391398.
  • [17]
    Brown, D.T., Brown, N.C., Burlingham, B.T. (1972) Morphology and physical properties of Staphylococcus bacteriophage P11-M15. J. Virol. 9, 664671.
  • [18]
    Carroll, D., Kehoe, M.A., Cavanagh, D., Coleman, D.C. (1995) Novel organization of the site-specific integration and excision recombination functions of the Staphylococcus aureus serotype F virulence-converting phages phi 13 and phi 42. Mol. Microbiol. 16, 877893.
  • [19]
    Novick, R.P. (1991) Genetic systems in staphylococci. Methods Enzymol. 204, 587636.
  • [20]
    Löfdahl, S., Sjöstrom, J.E., Philipson, L. (1981) Cloning of restriction fragments of DNA from staphylococcal bacteriophage phi 11. J. Virol. 37, 795801.
  • [21]
    Winkler, K.C., de Waart, J., Grootsen, C. (1965) Lysogenic conversion of staphylococci to loss of beta-toxin. J. Gen. Microbiol. 39, 321333.
  • [22]
    Iordanescu, S. (1976) Temperature-sensitive mutant of a tetracycline resistance staphylococcal plasmid. Arch. Roum. Pathol. Exp. Microbiol. 35, 257264.
  • [23]
    Miller, K.D., Hetrick, D.L., Bielefeldt, D.J. (1977) Production and properties of Staphylococcus aureus (strain Newman D2C). with uniform clumping factor activity. Thromb. Res. 10, 203211.
  • [24]
    Dobinsky, S., Kiel, K., Rohde, H., Bartscht, K., Knobloch, J.K., Horstkotte, M.A., Mack, D. (2003) Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J. Bacteriol. 185, 28792886.
  • [25]
    Gerke, C., Kraft, A., Süssmuth, R., Schweitzer, O., Götz, F. (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem. 273, 1858618593.
  • [26]
    Knobloch, J.K., Bartscht, K., Sabottke, A., Rohde, H., Feucht, H.H., Mack, D. (2001) Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183, 26242633.
  • [27]
    Otsuji, N., Sekiguchi, M., Iijima, T., Takagi, Y. (1959) Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C. Nature 184 (Suppl. 14), 10791080.
  • [28]
    Sumby, P., Waldor, M.K. (2003) Transcription of the toxin genes present within the staphylococcal phage phiSa3ms is intimately linked with the phage's life cycle. J. Bacteriol. 185, 68416851.
  • [29]
    Lee, J.S., Stewart, P.R. (1985) The virion proteins and ultrastructure of Staphylococcus aureus bacteriophages. J. Gen. Virol. 66, 20172027.
  • [30]
    Hertwig, S., Klein, I., Schmidt, V., Beck, S., Hammerl, J.A., Appel, B. (2003) Sequence analysis of the genome of the temperate Yersinia enterocolitica phage PY54. J. Mol. Biol. 331, 605622.
  • [31]
    Livny, J., Friedman, D.I. (2004) Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol. Microbiol. 51, 16911704.
  • [32]
    Brussow, H., Canchaya, C., Hardt, W.D. (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560602.
  • [33]
    Coleman, D.C., Sullivan, D.J., Russell, R.J., Arbuthnott, J.P., Carey, B.F., Pomeroy, H.M. (1989) Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135, 16791697.
  • [34]
    Birmingham, V.A., Pattee, P.A. (1981) Genetic transformation in Staphylococcus aureus: isolation and characterization of a competence-conferring factor from bacteriophage 80 alpha lysates. J. Bacteriol. 148, 301307.
  • [35]
    Sjöstrom, J.E., Lindberg, M., Philipson, L. (1973) Competence for transfection in Staphylococcus aureus. J. Bacteriol. 113, 576585.
  • [36]
    Sjöstrom, J.E., Philipson, L. (1974) Role of the phi 11 phage genome in competence of Staphylococcus aureus. J. Bacteriol. 119, 1932.
  • [37]
    Thompson, N.E., Pattee, P.A. (1977) Transformation in Staphylococcus aureus: role of bacteriophage and incidence of competence among strains. J. Bacteriol. 129, 778788.
  • [38]
    Karlsson, A., Arvidson, S. (2002) Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protease repressor sarA. Infect. Immun. 70, 42394246.
  • [39]
    Karlsson, A., Saravia-Otten, P., Tegmark, K., Morfeldt, E., Arvidson, S. (2001) Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases. Infect. Immun. 69, 47424748.
  • [40]
    Comis, R.L., Carter, S.K. (1974) A review of chemotherapy in gastric cancer. Cancer 34, 15761586.
  • [41]
    Longley, D.B., Harkin, D.P., Johnston, P.G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer. 3, 330338.
  • [42]
    Ackermann, H.W. (1975) Classification of the bacteriophages of Gram-positive cocci: Micrococcus, Staphylococcus, and Streptococcus. Pathol. Biol. (Paris) 23, 247253.