SEARCH

SEARCH BY CITATION

References

  • [1]
    van der Zwet, T., Beer, S.V. Fire Blight – Its Nature, Prevention and Control: A Practical Guide to Integrated Disease Management. (1999) US Department of Agriculture, Washington, DC 83 pp.
  • [2]
    Baker, K.F. (1971) Fire blight of pome fruits: the genesis of the concept that bacteria can be pathogenic to plants. Hilgardia 40, 603633.
  • [3]
    Bonn, W.G., van der Zwet, T. (2000) Distribution and economic importance of fire blight. In: Fire Blight, the Disease and its Causative Agent, Erwinia amylovora (Vanneste, J.L., Ed.), pp.37–54 CAB International, Wallingford.
  • [4]
    Steinberger, E.M., Beer, S.V. (1988) Creation and complementation of pathogenicity mutants of Erwinia amylovora. Mol. Plant-Microbe Interact. 1, 135144.
  • [5]
    Klement, Z. Hypersensitivity. Mount, M.S., Lacy, G.S., Eds. Phytopathogenic Prokaryotes. Vol. 2 (1982) Academic Press, New York 149–177.
  • [6]
    Lindgren, P.B., Peet, R.C., Panopoulos, N.J. (1986) Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J. Bacteriol. 168, 512522.
  • [7]
    Barny, M.A., Guinebretière, M.H., Marçais, B., Coissac, E., Paulin, J.P., Laurent, J. (1990) Cloning of a large gene cluster involved in Erwinia amylovora CFBP 1430 virulence. Mol. Microbiol. 4, 777786.
  • [8]
    Schmidt, H., Hensel, M. (2004) Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17, 1456.
  • [9]
    Oh, C.-S., Kim, J.F., Beer, S.V. (2005) The Hrp pathogenicity island of Erwinia amylovora and the identification of three novel genes required for systemic infection. Mol. Plant Pathol. 6, 125138.
  • [10]
    Bogdanove, A.J., Beer, S.V., Bonas, U., Boucher, C.A., Collmer, A., Coplin, D.L., Cornelis, G.R., Huang, H.-C., Hutcheson, S.W., Panopoulos, N.J., Van Gijsegem, F. (1996) Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20, 681683.
  • [11]
    Kim, J.F., Wei, Z.-M., Beer, S.V. (1997) The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. J. Bacteriol. 179, 16901697.
  • [12]
    Jin, Q., McGhee, G.C., Hart, P., Jones, A.L., He, S.Y. (2002) Secretion of Hrp and Dsp proteins via the Hrp pilus during type III secretion in Erwinia amylovora. Acta Hort. 590, 441448.
  • [13]
    Hakansson, S., Schesser, K., Persson, C., Galyov, E.E., Rosqvist, R., Homble, F., Wolf-Watz, H. (1996) The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. Embo J. 15, 58125823.
  • [14]
    Buttner, D., Nennstiel, D., Klusener, B., Bonas, U. (2002) Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 184, 23892398.
  • [15]
    Petnicki-Ocwieja, T., van Dijk, K., Alfano, J.R. (2005) The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator. J. Bacteriol. 187, 649663.
  • [16]
    Collmer, A., Lindeberg, M., Petnicki-Ocwieja, T., Schneider, D.J., Alfano, J.R. (2002) Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol. 10, 462469.
  • [17]
    Wei, Z.-M., Beer, S.V. (1995) hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of s factors. J. Bacteriol. 177, 62016210.
  • [18]
    Wei, Z., Kim, J.F., Beer, S.V. (2000) Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS. Mol. Plant-Microbe Interact. 13, 12511262.
  • [19]
    Wei, Z.-M., Sneath, B.J., Beer, S.V. (1992) Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J. Bacteriol. 174, 18751882.
  • [20]
    Hernandez-Guzman, G., Alvarez-Morales, A. (2001) Isolation and characterization of the gene coding for the amidinotransferase involved in the biosynthesis of phaseolotoxin in Pseudomonas syringae pv. phaseolicola. Mol. Plant-Microbe Interact. 14, 545554.
  • [21]
    Wang, L. (2004) Virulence genes of Erwinia amylovora: explorations, Ph.D. Cornell University, Ithaca, NY.
  • [22]
    Wei, Z.M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y., Collmer, A., Beer, S.V. (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257, 8588.
  • [23]
    Barny, M.A. (1995) Erwinia amylovora hrpN mutants, blocked in harpin synthesis, express a reduced virulence on host plants and elicit variable hypersensitive reactions on tobacco. Eur. J. Plant Pathol. 101, 333340.
  • [24]
    Kim, J.F., Beer, S.V. (1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180, 52035210.
  • [25]
    Ramos, A.R. (2004) Hrp proteins and harpins: defining their roles in the type III protein secretion system in Pseudomonas syringae. Ph.D. Cornell University, Ithaca, NY.
  • [26]
    Alfano, J.R., Collmer, A. (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385414.
  • [27]
    Perino, C., Gaudriault, S., Vian, B., Barny, M.A. (1999) Visualization of harpin secretion in planta during infection of apple seedlings by Erwinia amylovora. Cell Microbiol. 1, 131141.
  • [28]
    El-Maarouf, H., Barny, M.A., Rona, J.P., Bouteau, F. (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett. 497, 8284.
  • [29]
    Xie, Z., Chen, Z. (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol. Plant-Microbe Interact. 13, 183190.
  • [30]
    Oh, C.-S. (2005) Characterization of HrpN-interacting proteins from plants, the Hrp pathogenicity island of Erwinia amylovora, and its proteins that affect the hypersensitive response. Ph.D. Cornell University, Ithaca, NY.
  • [31]
    Venisse, J.S., Gullner, G., Brisset, M.N. (2001) Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol. 125, 21642172.
  • [32]
    Venisse, J.S., Barny, M.A., Paulin, J.P., Brisset, M.N. (2003) Involvement of three pathogenicity factors of Erwinia amylovora in the oxidative stress associated with compatible interaction in pear. FEBS Lett. 537, 198202.
  • [33]
    Dong, H.P., Peng, J., Bao, Z., Meng, X., Bonasera, J.M., Chen, G., Beer, S.V., Dong, H. (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol. 136, 36283638.
  • [34]
    Peng, J.-L., Dong, H.-S., Dong, H.-P., Delaney, T.P., Bonasera, J.M., Beer, S.V. (2003) Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol. 62, 317326.
  • [35]
    Dong, H., Delaney, T.P., Bauer, D.W., Beer, S.V. (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20, 207215.
  • [36]
    Bogdanove, A.J., Kim, J.F., Wei, Z., Kolchinsky, P., Charkowski, A.O., Conlin, A.K., Collmer, A., Beer, S.V. (1998) Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc. Natl. Acad. Sci. USA 95, 13251330.
  • [37]
    Gaudriault, S., Malandrin, L., Paulin, J.-P., Barny, M.-A. (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol. Microbiol. 26, 10571069.
  • [38]
    DebRoy, S., Thilmony, R., Kwack, Y.B., Nomura, K., He, S.Y. (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc. Natl. Acad. Sci. USA 101, 99279932.
  • [39]
    Bogdanove, A.J., Bauer, D.W., Beer, S.V. (1998) Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J. Bacteriol. 180, 22442247.
  • [40]
    Gaudriault, S., Paulin, J.P., Barny, M.A. (2002) The DspB/F protein of Erwinia amylovora is a type III secretion chaperone ensuring efficient intrabacterial production of the Hrp-secreted DspA/E pathogenicity factor. Mol. Plant Pathol. 3, 313320.
  • [41]
    Bocsanczy, A.M., Nissinen, R.M., Oh, C.-S. and Beer S.V. (2006) DspE, an effector of Erwinia amylovora is translocated into plant cells. Acta Hort. (in press).
  • [42]
    Meng, X., Bonasera, J.M., Kim, J.F., Nissinen, R.M. and Beer, S.V. (2006) Apple proteins that interact with DspE, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol. Plant-Microbe Interact. (in press).
  • [43]
    Kim, W.-S., Bonasera, J.M., Meng, X., Owens, T. and Beer, S.V. (2006) Interaction of DspE/A, a pathogenicity/avirulence protein of Erwinia amylovora, with pre-ferredoxin from apple and its relationship to photosynthetic efficiency. Acta Hort. (in press).
  • [44]
    Staskawicz, B.J., Mudgett, M.B., Dangl, J.L., Galan, J.E. (2001) Common and contrasting themes of plant and animal diseases. Science 292, 22852289.
  • [45]
    Kim, J.F. (1997) Molecular characterization of a novel harpin and two hrp secretory operons of Erwinia amylovora, and a hrp operon of E. chrysanthemi. Ph.D. Cornell University, Ithaca, NY.
  • [46]
    Bogdanove, A.J., Wei, Z.-M., Zhao, L., Beer, S.V. (1996) Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia. J. Bacteriol. 178, 17201730.
  • [47]
    Bogdanove, A.J. (1997) Harpin, hrp secretion genes, and the hrp-linked disease-specific (dsp) operon of Erwinia amylovora. Ph.D. Cornell University, Ithaca, NY.
  • [48]
    Goodman, R.N., Huang, J.S., Huang, P.Y. (1974) Host-specific phytotoxic polysaccharide from apple tissue infected by Erwinia amylovora. Science 183, 10811082.
  • [49]
    Sjulin, T.M., Beer, S.V. (1978) Mechanism of wilt induction by amylovoran in Cotoneaster shoots and its relation to wilting of shoots infected by Erwinia amylovora. Phytopathology 68, 8994.
  • [50]
    Bellemann, P., Geider, K. (1992) Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. J. Gen. Microbiol. 138, 931940.
  • [51]
    Gross, M., Geier, G., Rudolph, K., Geider, K. (1992) Levan and levansucrase synthesized by the fire blight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 40, 371381.
  • [52]
    Bugert, P., Geider, K. (1995) Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol. Microbiol. 15, 917933.
  • [53]
    Kelm, O., Kiecker, C., Geider, K., Bernhard, F. (1997) Interaction of the regulator proteins RcsA and RcsB with the promoter of the operon for amylovoran biosynthesis in Erwinia amylovora. Mol. Gen. Genet. 256, 7283.
  • [54]
    Bereswill, S., Geider, K. (1997) Characterization of the rcsB gene from Erwinia amylovora and its influence on exoploysaccharide synthesis and virulence of the fire blight pathogen. J. Bacteriol. 179, 13541361.
  • [55]
    Geier, G., Geider, K. (1993) Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 42, 387404.
  • [56]
    Zhang, Y., Geider, K. (1999) Molecular analysis of the rlsA gene regulating levan production by the fireblight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 54, 187201.
  • [57]
    Aldridge, P., Metzger, M., Geider, K. (1997) Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence. Mol. Gen. Genet. 256, 611619.
  • [58]
    Seemüller, E.A., Beer, S.V. (1976) Absence of cell wall polysaccharide degradation of Erwinia amylovora. Phytopathology 66, 433436.
  • [59]
    Zhang, Y., Bak, D.D., Heid, H., Geider, K. (1999) Molecular characterization of a protease secreted by Erwinia amylovora. J. Mol. Biol. 289, 12391251.
  • [60]
    Ratledge, C., Dover, L.G. (2000) Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881941.
  • [61]
    Vanneste, J.L. Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic, and molecular basis. Singh, U.S., Singh, R.P., Kohmoto, K., Eds. Procaryotes. Vol. 1 (1995) Pergamon Press, Oxford 21–41.
  • [62]
    Kachadourian, R., Dellagi, A., Laurent, J., Bricard, L., Kunesch, G., Expert, D. (1996) Desferrioxamine-dependent iron transport in Erwinia amylovora CFBP1430: cloning of the gene encoding the ferrioxamine receptor FoxR. Biometals 9, 143150.
  • [63]
    Dellagi, A., Brisset, M.N., Paulin, J.P., Expert, D. (1998) Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol. Plant Microbe Interact. 11, 734742.