SEARCH

SEARCH BY CITATION

References

  • [1]
    Duckworth, D (1987) History and basic properties of bacterial viruses. In: Phage Ecology (Goyal, S.M, Gerba, C.P, Bitton, G, Eds.), pp.1–44 John Wiley & Sons, New York.
  • [2]
    Levin, B, Bull, J (1996) Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147, 881898.
  • [3]
    Sulakvelidze, A, Alavidze, Z J.G Morris Jr. (2001) Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649659.
  • [4]
    Merril, C.R, Biswas, B, Carlton, R, Jensen, N.C, Creed, G.J, Zullo, S, Adhya, S (1996) Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA 93, 31883192.
  • [5]
    Wiebe, W, Liston, J (1968) Isolation and characterization of a marine bacteriophage. Mar. Biol. 1, 244249.
  • [6]
    Torrella, F, Morita, R.Y (1979) Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomical implications. Appl. Environ. Microbiol. 37, 774778.
  • [7]
    Bitton, G (1987) Fate of bacteriophages in water and wastewater treatment plants. In: Phage Ecology (Goyal, S.M, Gerba, C.P, Bitton, G, Eds.), pp.181–194 John Wiley & Sons, New York.
  • [8]
    Azam, F, Fenchel, T, Field, J.G, Gray, J.S, Meyer-Reil, L.A, Thingstad, F (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257263.
  • [9]
    Pomeroy, L.R (1974) The ocean's food web, a changing paradigm. BioScience 24, 499504.
  • [10]
    Sieburth, J.M, Johnson, P.W, Hargraves, P.E (1988) Ultrastructure and ecology of Aureococcus anophagefferens gen. et sp. nov. (Chrysophyceae): the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. J. Phycol. 24, 416425.
  • [11]
    Proctor, L.M, Fuhrman, J.A, Ledbetter, M.C (1988) Marine bacteriophages and bacterial mortality. EOS 69, 11111112.
  • [12]
    Bergh, Ø, Børsheim, K.Y, Bratbak, G, Heldal, M (1989) High abundance of viruses found in aquatic environments. Nature 340, 467468.
  • [13]
    Proctor, L.M, Fuhrman, J.A (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343, 6062.
  • [14]
    Suttle, C.A, Chan, A.M, Cottrell, M.T (1990) Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347, 467469.
  • [15]
    Hurst, C (2000) Defining the ecology of viruses. In: Viral Ecology (Hurst, C, Ed.), pp.3–40 Academic Press, San Diego.
  • [16]
    Suttle, C (2000) Cyanophages and their role in the ecology of cyanobacteria. In: The Ecology of Cyanobacteria (Whitton, B, Potts, M, Eds.), pp.563–589 Kluwer Academic Publishers, The Netherlands.
  • [17]
    Suttle, C (2000) Ecological, evolutionary, and geochemical consequences of viral infection of cyanobacteria and eukaryotic algae. In: Viral Ecology (Hurst, C, Ed.), pp.247–296 Academic Press, San Diego.
  • [18]
    Zillig, W, Prangishvilli, D, Schleper, C, Elferink, M, Holz, I, Albers, S, Janekovic, D, Götz, D (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol. Rev. 18, 225236.
  • [19]
    Paul, J (2000) Ecology of bacteriophages in nature. In: Viral Ecology (Hurst, C, Ed.), pp.211–246 Academic Press, San Diego.
  • [20]
    Børsheim, K.Y (1993) Native marine bacteriophages. FEMS Microbiol. Ecol. 102, 141159.
  • [21]
    Fuhrman, J. Impact of viruses on bacterial processes. Kirchman, D, Ed. Microbial Ecology of the Oceans. 2000. Wiley-Liss. 327–350
  • [22]
    Waterbury, J.B (1992) Viruses of marine bacteria. Oceanus 35, 107108.
  • [23]
    Fuhrman, J.A, Suttle, C.A (1993) Viruses in marine planktonic systems. Oceanography 6, 5163.
  • [24]
    Bratbak, G, Heldal, M (1995) Viruses – the new players in the game: their ecological role and could they mediate genetic exchange by transduction?. In: Molecular Ecology of Aquatic Microbes (Joint, I, Ed.), pp.249–264 Springer-Verlag, Berlin.
  • [25]
    Fuhrman, J (1992) Bacterioplankton roles in cycling of organic matter: the microbial food web. In: Primary Productivity and Biogeochemical Cycles in the Sea (Falkowski, P.G, Woodhead, A.D, Eds.), pp.361–383 Plenum Press, New York.
  • [26]
    Fuhrman, J.A (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399, 541548.
  • [27]
    Thingstad, T.F, Heldal, M, Bratbak, G, Dundas, I (1993) Are viruses important partners in pelagic food webs. Trends Ecol. Evol. 8, 209213.
  • [28]
    Bratbak, G, Thingstad, F, Heldal, M (1994) Viruses and the microbial loop. Microb. Ecol. 28, 209221.
  • [29]
    Suttle, C.A (1994) The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237243.
  • [30]
    Proctor, L (1997) Advances in the study of marine viruses. Microsc. Res. Tech. 37, 136161.
  • [31]
    Proctor, L.M (1998) Marine virus ecology. In: Molecular Approaches to the Study of the Ocean (Cooksey, K.E, Ed.), pp.113–130 Chapman & Hall, London.
  • [32]
    Wommack, K.E, Colwell, R.R (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69114.
  • [33]
    Reisser, W (1993) Viruses and virus-like particles of freshwater and marine eukaryotic algae – a review. Arch. Protistenkd. 143, 257265.
  • [34]
    Wilhelm, S.W, Suttle, C.A (1999) Viruses and nutrient cycles in the Sea. Bioscience 49, 781788.
  • [35]
    Goyal, S, Gerba, C, Bitton, G. Phage Ecology. Mitchell, R, Ed. Wileys Series in Ecological and Applied Microbiology. 1987. Wiley & Sons, New York
  • [36]
    Ackermann, H.-W, DuBow, M.S, Viruses of Prokaryotes. General Properties of Bacteriophages. Vol. I, 1987. CRC Press, Boca Raton. 202 p
  • [37]
    Lenski, R.E (1988) Dynamics of interactions between bacteria and virulent bacteriophage. Adv. Microb. Ecol. 10, 144.
  • [38]
    Marsh, P, Wellington, E (1994) Phage–host interactions in soil. FEMS Microbiol. Ecol. 15, 99108.
  • [39]
    Williams, S (1994) Bacteriophages in soils. In: Encyclopedia of Virology (Webster, R, Granoff, A, Eds.), pp.121–126 Academic Press, London.
  • [40]
    Regenmortel, M.H.V.v (1992) Concept of virus species. Biodiversity and Conservation 1, 263266.
  • [41]
    Rohwer, F, Edwards, R (2002) The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184, 45294535.
  • [42]
    Hurst, C (2000) An introduction to viral taxonomy and the proposal of Akamara, a potential domain for the genomic acellular agents. In: Viral Ecology (Hurst, C, Ed.), pp.41–62 Academic Press, San Diego.
  • [43]
    Ackermann, H.-W (1999) Tailed bacteriophages: the order Caudovirales. Adv. Virus Res. 51, 135201.
  • [44]
    Hendrix, R, Smith, M, Burns, R, Ford, M, Hatfull, G (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc. Natl. Acad. Sci. USA 96, 21922197.
  • [45]
    Smith, M, Burns, R, Wilson, S, Gregory, M (1999) The complete genome sequence of the Streptomyces temperate phage φC31: evolutionary relationships to other viruses. Nucleic Acids Res. 27, 21452155.
  • [46]
    Villarreal, L.P, DeFilippis, V.R (2000) A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J. Virol. 74, 70797084.
  • [47]
    Villarreal, L (2001) Persisting viruses could play role in driving host evolution. ASM News 67, 501507.
  • [48]
    Lawrence, J.G, Hatfull, G.F, Hendrix, R.W (2002) Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184, 48914905.
  • [49]
    Barksdale, L, Arden, S.B (1974) Persisting bacteriophage infections, lysogeny, and phage conversions. Annu. Rev. Microbiol. 25, 265299.
  • [50]
    Wilson, E. The Diversity of Life. 1992. W.W. Norton & Company, New York. 424 p
  • [51]
    Staley, J.T, Konopka, A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321346.
  • [52]
    Rehnstam, A.-S, Bäckman, S, Smith, D.C, Azam, F, Hagström, Å (1993) Blooms of sequence specific culturable bacteria in the sea. FEMS Microbiol. Ecol. 102, 161166.
  • [53]
    Woese, C.R (1987) Bacterial evolution. Microbiol. Rev. 51, 221271.
  • [54]
    Fuhrman, J.A (1996) Community structure: bacteria and archaea. In: Manual of Environmental Microbiology (Hurst, C.J, Knudson, G.R, McInerey, M.J, Stezenbach, L.D, Walter, M.V, Eds.), pp.278–283 ASM Press, Washington.
  • [55]
    Stahl, D.A (1996) Molecular approaches for the measurement of density, diversity and phylogeny. In: Manual of Environmental Microbiology (Hurst, C.J, Knudson, G.R, McInerey, M.J, Stezenbach, L.D, Walter, M.V, Eds.), pp.102–114 ASM Press, Washington.
  • [56]
    Suttle, C.A (1993) Enumeration and isolation of viruses. In: Handbook of Methods in Aquatic Microbial Ecology (Kemp, P.F, Sherr, B, Sherr, E, Cole, J.J, Eds.), pp.121–134 Lewis Publishers, Boca Raton.
  • [57]
    Bratbak, G, Heldal, M (1993) Total counts of viruses in aquatic environments. In: Handbook of Methods in Aquatic Microbial Ecology (Kemp, P.F, Sherr, B, Sherr, E, Cole, J.J, Eds.), pp.135–138 Lewis Publishers, Boca Raton.
  • [58]
    Suttle, C.A (1996) Community structure: viruses. In: Manual of Environmental Microbiology (Hurst, C.J, Knudson, G.R, McInerey, M.J, Stezenbach, L.D, Walter, M.V, Eds.), pp.272–277 ASM Press, Washington.
  • [59]
    Noble, R. Enumeration of viruses Paul, J, Ed., Methods in Microbiology. Vol. 30, 2001. Academic Press, San Diego. 43–51
  • [60]
    Wilhelm, S, Poorvin, L. Quantification of algal viruses in marine samples Paul, J, Ed., Methods in Microbiology. Vol. 30, 2001. Academic Press, San Diego. 53–65
  • [61]
    Field, A.M (1982) Diagnostic virology using electron microscopy. Adv. Viral. Res. 27, 169.
  • [62]
    Goyal, S (1987) Methods in phage ecology. In: Phage Ecology (Goyal, S.M, Gerba, C.P, Bitton, G, Eds.), pp.267–287 Wiley-Interscience, New York.
  • [63]
    Ewert, D, Paynter, M (1980) Enumeration of bacteriophages and host bacteria in sewage and the activates sludge treatment process. Appl. Environ. Microbiol. 39, 6769.
  • [64]
    Marie, D, Brussaard, C, Thyrhaug, R, Bratbak, G, Vaulot, D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol. 65, 4552.
  • [65]
    Hara, S, Terauchi, K, Koike, I (1991) Abundance of viruses in marine waters: assessment by epiflourescence and transmission electron microscopy. Appl. Environ. Microbiol. 57, 27312734.
  • [66]
    Paul, J.H, Jiang, S.C, Rose, J.B (1991) Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Appl. Environ. Microbiol. 57, 21972204.
  • [67]
    Proctor, L.M, Fuhrman, J.A (1992) Mortality of marine bacteria in response to enrichments of the virus size fraction from seawater. Mar. Ecol. Prog. Ser. 87, 283293.
  • [68]
    Hennes, K.P, Suttle, C.A (1995) Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy. Limnol. Oceanogr. 40, 10501055.
  • [69]
    Xenopoulos, M.A, Bird, D.F (1997) Virus á la sauce Yo-Pro: microwave-enhanced staining for counting viruses by epifluorescence microscopy. Limnol. Oceanogr. 42, 16481650.
  • [70]
    Noble, R.T, Fuhrman, J.A (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113118.
  • [71]
    Chen, F, Lu, J.R, Binder, B.J, Liu, Y.C, Hodson, R.E (2001) Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Appl. Environ. Microbiol. 67, 539545.
  • [72]
    Weinbauer, M.G, Suttle, C.A (1997) Comparison of epifluorescence and transmission electron microscopy for counting viruses and bacteria in natural marine waters. Aquat. Microb. Ecol. 13, 225232.
  • [73]
    Bettarel, Y, Sime-Ngando, T, Amblard, C, Laveran, H (2000) A comparison of methods for counting viruses in aquatic systems. Appl. Environ. Microbiol. 66, 22832289.
  • [74]
    Brussaard, C, Marie, D, Bratbak, G (2000) Flow cytometric detection of viruses. J. Virol. Methods 85, 175182.
  • [75]
    Shopov, A, Williams, S, Verity, P (2000) Improvements in image analysis and fluorescence microscopy to discriminate and enumerate bacteria and viruses in aquatic samples. Aquat. Microb. Ecol. 22, 103110.
  • [76]
    R.L Kepner Jr. Pratt, J.R (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol. Rev. 58, 603615.
  • [77]
    Sommaruga, R, Krössbacher, M, Salvenmoser, W, Catalan, J, Psenner, R (1995) Presence of large virus-like particles in a eutrophic reservoir. Aquat. Microb. Ecol. 9, 305308.
  • [78]
    Short, S, Suttle, C (1999) Use of the polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities. Hydrobiologia 401, 1933.
  • [79]
    Benner, R (1991) Ultrafiltration for the concentration of bacteria, viruses, and dissolved organic matter. In: Marine Particles: Analysis and Characterization (Hurde, D.C, Spencer, D.W, Eds.), pp.181–185 American Geophysical Union, Washington, DC.
  • [80]
    Suttle, C.A, Chan, A.M, Cottrell, M.T (1991) Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl. Environ. Microbiol. 57, 721726.
  • [81]
    Wommack, K.E, Hill, R.T, Colwell, R.R (1995) A simple method for the concentration of viruses from natural water samples. J. Microbiol. Methods 22, 5767.
  • [82]
    Ellis, E, Delbrück, M (1939) The growth of bacteriophage. J. Gen. Physiol. 22, 365384.
  • [83]
    Bratbak, G, Heldal, M, Thingstad, T.F, Riemann, B, Haslund, O.H (1992) Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar. Ecol. Prog. Ser. 83, 273280.
  • [84]
    Heldal, M, Bratbak, G (1991) Production and decay of viruses in aquatic environments. Mar. Ecol. Prog. Ser. 72, 205212.
  • [85]
    Weinbauer, M.G, Peduzzi, P (1994) Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes. Mar. Ecol. Prog. Ser. 108, 1120.
  • [86]
    Weinbauer, M.G, Fuks, D, Peduzzi, P (1993) Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic Sea. Appl. Environ. Microbiol. 59, 40744082.
  • [87]
    Weinbauer, M.G, Peduzzi, P (1995) Significance of viruses versus heterotrophic nanoflagellates for controlling bacterial abundance in the Northern Adriatic Sea. J. Plankton Res. 17, 18511856.
  • [88]
    Weinbauer, M.G, Suttle, C.A (1996) Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the Gulf of Mexico. Appl. Environ. Microbiol. 62, 43744380.
  • [89]
    Weinbauer, M.G, Höfle, M.G (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. Environ. Microbiol. 64, 431438.
  • [90]
    Weinbauer, M.G, Höfle, M.G (1998) Cell size-specific lysis of lake bacterioplankton by natural virus communities. Aquat. Microb. Ecol. 156, 103113.
  • [91]
    Weinbauer, M.G, Suttle, C.A (1999) Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat. Microb. Ecol. 18, 217225.
  • [92]
    Weinbauer, M, Winter, C, Höfle, M (2002) Reconsidering transmission electron microscopy based estimates of viral infection of bacterioplankton using conversion factors derived from natural communities. Aquat. Microb. Ecol. 27, 103110.
  • [93]
    Simek, K, Pernthaler, J, Weinbauer, M, Hornák, K, Dolan, J, Nedoma, J, Masin, M, Amann, R (2001) Changes in bacterial community composition, dynamics and viral mortality rates associated with enhanced flagellate grazing in a meso-eutrophic reservoir. Appl. Environ. Microbiol. 67, 17232733.
  • [94]
    Mathias, C.B, Kirschner, A.K.T, Velimirov, B (1995) Seasonal variations of virus abundance and viral control of the bacterial production in a backwater system of the Danube river. Appl. Environ. Microbiol. 61, 37343740.
  • [95]
    Fischer, U, Velimirov, B. High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat. Microb. Ecol. 2002. 1–12
  • [96]
    Hofer, J, Sommaruga, R (2001) Seasonal dynamics of viruses in an alpine lake: importance of filamentous forms. Aquat. Microb. Ecol. 26, 111.
  • [97]
    Hennes, K.P, Simon, M (1995) Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl. Environ. Microbiol. 61, 333340.
  • [98]
    Middelboe, M, Nielsen, T, Bjørnsen, P (2002) Viral and bacterial production in the North Water: in situ measurements, batch culture experiments and characterization and distribution of a virus–host system. Deep-Sea Res. II, 50635079.
  • [99]
    Bettarel, Y, Dolan, J, Hornak, K, Lemée, R, Masin, M, Pedrotti, M.-L, Rochelle-Newall, E, Simek, K, Sime-Ngando, T (2002) Strong, weak and missing links in a microbial community of the N.W. Mediterranean Sea. FEMS Microbiol. Ecol. 42, 451462.
  • [100]
    Hwang, C, Cho, B (2002) Virus-infected bacteria in oligotrophic open waters of the East Sea, Korea. Aquat. Microb. Ecol. 30, 19.
  • [101]
    Guixa-Boixareu, N, Calderón-Paz, J.I, Heldal, M, Bratbak, G, Pedrós-Alió, C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11, 215227.
  • [102]
    Fuhrman, J.A, Noble, R.T (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr. 40, 12361242.
  • [103]
    Fischer, U.R, Velimirov, B (2000) Comparative study of the abundance of various bacterial morphotypes in an eutrophic freshwater environment determined by AODC and TEM. J. Microbiol. Methods 39, 213224.
  • [104]
    Middelboe, M, Lyck, P (2002) Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat. Microb. Ecol. 27, 187194.
  • [105]
    Noble, R, Steward, G. Estimating viral proliferation in aquatic samples Paul, J, Ed., Methods in Microbiology. Vol. 30, 2001. Academic Press, San Diego. 67–84
  • [106]
    Bratbak, G, Heldal, M, Norland, S, Thingstad, T.F (1990) Viruses as partners in spring bloom microbial trophodynamics. Appl. Environ. Microbiol. 56, 14001405.
  • [107]
    Suttle, C.A, Chen, F (1992) Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol. 58, 37213729.
  • [108]
    Jeffrey, W.H, Kase, J.P, Wilhelm, S.W (2000) Ultraviolet radiation effects on bacterioplankton and viruses in marine ecosystems. In: Effects of UV Radiation on Marine Ecosystems (De Mora, S.J et al., Ed.), pp.206–236 Cambridge University Press, Cambridge.
  • [109]
    Steward, G.F, Wikner, J, Smith, D.C, Cochlan, W.P, Azam, F (1992) Estimation of virus production in the sea: I. Method development. Mar. Microb. Food Webs 6, 5778.
  • [110]
    Steward, G.F, Wikner, J, Cochlan, W.P, Smith, D.C, Azam, F (1992) Estimation of virus production in the sea: II. Field results. Mar. Microb. Food Webs 6, 7990.
  • [111]
    Steward, F.G, Smith, D.C, Azam, F (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Sea. Mar. Ecol. Prog. Ser. 131, 287300.
  • [112]
    Kepner, R R.A Wharton Jr. Suttle, C.A (1998) Viruses in Antarctic lakes. Limnol. Oceanogr. 43, 17541761.
  • [113]
    Noble, R.T, Fuhrman, J.A (2000) Rapid virus production and removal as measured with fluorescently labeled viruses as tracers. Appl. Environ. Microbiol. 66, 37903797.
  • [114]
    Wilhelm, S, Brigden, S, Suttle, C (2002) A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb. Ecol. 43, 168173.
  • [115]
    Valentine, A.F, Chapman, G.B (1966) Fine structure and host–virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92, 15351554.
  • [116]
    Proctor, L.M, Okubo, A, Fuhrman, J.A (1993) Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb. Ecol. 25, 161182.
  • [117]
    Binder, B (1999) Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells. Aquat. Microb. Ecol. 18, 207215.
  • [118]
    Bertani, G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293300.
  • [119]
    Bratbak, G, Heldal, M, Thingstad, T.F, Tuomi, P (1996) Dynamics of virus abundance in coastal seawater. FEMS Microb. Ecol. 19, 263269.
  • [120]
    Servais, P, Billen, G, Rego, J.V (1985) Rate of bacterial mortality in aquatic environments. Appl. Environ. Microbiol. 49, 14481454.
  • [121]
    Guixa-Boixereu, N, Lysnes, K, Pedrós-Alió, C (1999) Viral lysis and bacterivory during a phytoplankton bloom in a coastal water mesocosm. Appl. Environ. Microbiol. 65, 19491958.
  • [122]
    Wilcox, R.M, Fuhrman, J.A (1994) Bacterial viruses in coastal seawater: lytic rather than lysogenic production. Mar. Ecol. Prog. Ser. 114, 3545.
  • [123]
    Almeida, M, Cunha, M, Alcântara, F (2001) Loss of estuarine bacteria by viral infection and predation in microcosm conditions. Microb. Ecol. 42, 562571.
  • [124]
    Noble, R, Fuhrman, J (1999) Breakdown and microbial uptake of marine viruses and other lysis products. Aquat. Microb. Ecol. 20, 111.
  • [125]
    Jiang, S.C, Paul, J.H (1996) Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar. Ecol. Prog. Ser. 142, 2738.
  • [126]
    Cochran, P.K, Kellogg, C.A, Paul, J.H (1998) Prophage induction of indigenous marine lysogenic bacteria by environmental pollutants. Mar. Ecol. Prog. Ser. 164, 125133.
  • [127]
    Cochran, P.K, Paul, J.H (1998) Seasonal abundance of lysogenic bacteria in a subtropical estuary. Appl. Environ. Microbiol. 64, 23082312.
  • [128]
    Paul, J, Jiang, S. Lysogeny and transduction Paul, J, Ed., Methods in Microbiology. Vol. 30, 2001. Academic Press, San Diego. 105–125
  • [129]
    Ogunseitan, O.A, Sayler, G.S, Miller, R.V (1992) Application of DNA probes to analysis of bacteriophage distribution patterns in the environment. Appl. Environ. Microbiol. 58, 20462052.
  • [130]
    Chen, F, Suttle, C.A (1995) Nested PCR with three highly degenerate primers for amplification and identification of DNA from related organisms. BioTechniques 18, 609611.
  • [131]
    Chen, F, Suttle, C.A (1995) Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl. Environ. Microbiol. 61, 12741278.
  • [132]
    Chen, F, Suttle, C.A (1996) Evolutionary relationships among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology 219, 170178.
  • [133]
    Fuller, N.J, Wilson, W.H, Joint, I.R, Mann, N.H (1998) Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques. Appl. Environ. Microbiol. 64, 20512060.
  • [134]
    Wilson, W, Fuller, N, Joint, I, Mann, N (1999) Analysis of cyanophage diversity and population structure in a south–north transect of the Atlantic ocean. Bull. Inst. Océanogr. Monaco 19, 209216.
  • [135]
    Muyzer, G, De Waal, E.C, Uitterlinden, A.G (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695700.
  • [136]
    Short, S, Suttle, C (2000) Denaturing gradient gel electrophoresis resolves virus sequences amplified with degenerate primers. BioTechniques 28, 2026.
  • [137]
    Nübel, U, Engelen, B, Felske, A, Snaidr, J, Wieshuber, A, Amann, R.I, Ludwig, W, Backhaus, H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178, 56365643.
  • [138]
    Schwieger, F, Tebbe, C.C (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64, 48704876.
  • [139]
    Moyer, C.L, Dobbs, F.C, Karl, D.M (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60, 871879.
  • [140]
    Wintzingerode, F, Göbel, U.B, Stackebrandt, E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213229.
  • [141]
    Gruber, F, Falkner, F.G, Dorner, F, Hammerle, T (2001) Quantitation of viral dna by real-time pcr applying duplex amplification, internal standardization, and two-color fluorescence detection. Appl. Environ. Microbiol. 67, 28372839.
  • [142]
    Suzuki, M.T, Taylor, L.T, DeLong, E.F (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol. 66, 46054614.
  • [143]
    Klieve, A, Swain, R (1993) Estimation of ruminal bacteriophage numbers by pulsed-field gel electrophoresis and laser densitometry. Appl. Environ. Microbiol. 59, 22992303.
  • [144]
    Swain, R.S, Nolan, J.V, Klieve, A.V (1996) Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Appl. Environ. Microbiol. 62, 994997.
  • [145]
    Wommack, K.E, Ravel, J, Holl, R.T, Chun, J, Colwell, R.R (1999) Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulse-field gel electrophoresis. Appl. Environ. Microbiol. 65, 231240.
  • [146]
    Wommack, K.E, Ravel, J, Hill, R.T, Colwell, R.R (1999) Hybridization analysis of Chesapeake Bay virioplankton. Appl. Environ. Microbiol. 65, 241250.
  • [147]
    Steward, G, Montiel, J, Azam, F (2000) Genome size distributions indicate variability and similarity among marine viral assemblages from diverse environments. Limnol. Oceanogr. 45, 16971706.
  • [148]
    Steward, G. Fingerprinting viral assemblages by pulsed field gel electrophoresis Paul, J, Ed., Methods in Microbiology. Vol. 30, 2001. Academic Press, San Diego. 85–103
  • [149]
    Steward, C, Azam, F (2000) Analysis of marine viral assemblages. In: Microbial Biosystems (Bell, C, Brylinsky, M, Johnson-Green, P, Eds.), pp.159–165 Atlantic Canada Society for Microbial Ecology, Halifax.
  • [150]
    Bradley, D.E (1967) Ultrastructure of bacteriophages and bacteriocins. Bacteriol. Rev. 31, 230314.
  • [151]
    Frank, H, Moebus, K (1987) An electron microscopic study of bacteriophages from marine waters. Helgoländer Meeresunters. 41, 385414.
  • [152]
    Demuth, J, Neve, H, Witzel, K.-P (1993) Direct electron evidence study on the morphological diversity of bacteriophage populations in Lake Plußsee. Appl. Environ. Microbiol. 59, 33783384.
  • [153]
    Tapper, M.A, Hicks, R.E (1998) Temperate viruses and lysogeny in Lake Superior bacterioplankton. Limnol. Oceanogr. 43, 95103.
  • [154]
    Bratbak, G, Haslund, O.H, Heldal, M, Næss, A, Røeggen, T (1992) Giant marine viruses. Mar. Ecol. Prog. Ser. 85, 201202.
  • [155]
    Peduzzi, P, Weinbauer, M.G (1993) The submicron size fraction of seawater containing high numbers of virus particles as bioactive agent in unicellular plankton community successions. J. Plankton Res. 15, 13751386.
  • [156]
    Jiang, S.C, Paul, J.H (1994) Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar. Ecol. Prog. Ser. 104, 163172.
  • [157]
    Pina, S, Creus, A, González, N, Gironés, R, Felip, M, Sommaruga, R (1998) Abundance, morphology and distribution of planktonic virus-like particles in two high-mountain lakes. J. Plankton Res. 20, 24132421.
  • [158]
    Gowing, M.M (1993) Large virus-like particles from vacuoles of Phaeodarian radiolarians and from other marine samples. Mar. Ecol. Prog. Ser. 101, 3343.
  • [159]
    Cochlan, W.P, Wikner, J, Steward, G.F, Smith, D.C, Azam, F (1993) Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Mar. Ecol. Prog. Ser. 92, 7787.
  • [160]
    Maranger, R, Bird, D.F, Juniper, S.K (1994) Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near resolute, N.W.T., Canada. Mar. Ecol. Prog. Ser. 111, 121127.
  • [161]
    Maranger, R, Bird, D.F (1995) Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar. Ecol. Prog. Ser. 121, 217226.
  • [162]
    Børsheim, K.Y, Bratbak, G, Heldal, M (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl. Environ. Microbiol. 56, 352356.
  • [163]
    Montanié, H, Hartmann, H.J, Crottereau, C, Trichet, C (2002) Virus-like particle analysis in a seston-rich coastal pond using transmission electron microscopy. Aquat. Microb. Ecol. 28, 105115.
  • [164]
    Andersson, A, Larsson, U, Hagström, Å (1986) Size selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 33, 5157.
  • [165]
    Simek, K, Chrzanowski, T.H (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl. Environ. Microbiol. 58, 37153720.
  • [166]
    González, J.M, Suttle, C.A (1993) Grazing by marine nanoflagellates on viruses and viral-sized particles: ingestion and digestion. Mar. Ecol. Prog. Ser. 94, 110.
  • [167]
    Murray, A.G (1995) Phytoplankton exudation: exploitation of the microbial loop as a defense against algal viruses. J. Plankton Res. 17, 10791094.
  • [168]
    Wommack, K.E, Hill, R.T, Kessel, M, Russek-Cohen, E, Colwell, R.R (1992) Distribution of viruses in the Chesapeake Bay. Appl. Environ. Microbiol. 58, 29652970.
  • [169]
    Ackermann, H.-W (1996) Frequency of morphological phage descriptions in 1995. Arch. Virol 141, 209218.
  • [170]
    Lu, J, Chen, F, Hodson, R.E (2001) Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus sp. in river estuaries. Appl. Environ. Microbiol. 67, 32853290.
  • [171]
    Waterbury, J.B, Valois, F.W (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 33933399.
  • [172]
    Klut, M.E, Stockner, J.G (1990) Virus-like particles in an ultra-oligotrophic lake on Vancouver Island, British Columbia. Can. J. Fish. Aquat. Sci. 47, 725730.
  • [173]
    Suttle, C.A, Chan, A.M (1994) Dynamics and distribution of cyanophages and their effect on marine Synechococcus sp. Appl. Environ. Microbiol. 60, 31673174.
  • [174]
    Suttle, C.A, Chan, A.M (1993) Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar. Ecol. Prog. Ser. 92, 99109.
  • [175]
    Cottrell, M.T, Suttle, C.A (1995) Dynamics of a lytic virus infecting the photosynthetic marine picoflagellate Micromonas pusilla. Limnol. Oceanogr. 40, 730739.
  • [176]
    Breitbart, M, Salamon, P, Andresen, B, Mahaffy, J.M, Segall, A.M, Mead, D, Azam, F, Rohwer, F (2002) Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 99, 1425014255.
  • [177]
    Karner, M.B, DeLong, E.F, Karl, D.M (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507510.
  • [178]
    Wais, A.C, Kon, M, MacDonald, R.E, Stollar, B.D (1975) Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature 256, 314315.
  • [179]
    Pauling, C (1982) Bacteriophages of Halobacterium halobium: isolation from fermented fish sauce and primary characterization. Can. J. Microbiol. 28, 916921.
  • [180]
    Oren, A, Bratbak, G, Heldal, M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1, 143149.
  • [181]
    Boehme, J, Frischer, M.E, Jiang, S.C, Kellogg, C.A, Pichard, S, Rose, J.B, Steinway, C, Paul, J.H (1993) Viruses, bacterioplankton, and phytoplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools. Mar. Ecol. Prog. Ser. 97, 110.
  • [182]
    Weinbauer, M. (unpublished data)
  • [183]
    Taylor, G, Iabichella, M, Ho, T.-Y, Scranton, M, Thunell, R, Muller-Karger, F, Varela, R (2001) Chemoautotrophy in the redox transition zone of the Cariaco basin: a significant midwater source of organic carbon production. Limnol. Oceanogr. 46, 148163.
  • [184]
    Taylor, G, Hein, C, Iabichella, M (2003) Temporal variations in viral distributions in the anoxic Cariaco basin. Aquat. Microb. Ecol. 30, 103116.
  • [185]
    Weinbauer, M.G, Fuks, D, Puskaric, S, Peduzzi, P (1995) Diel, seasonal and depth-related variability of viruses and dissolved DNA in the northern Adriatic Sea. Microb. Ecol. 30, 2541.
  • [186]
    Riemann, L, Middelboe, M (2002) Stability of bacterial and viral communities in Danish coastal waters as depicted by DNA fingerprinting techniques. Aquat. Microb. Ecol. 27, 219232.
  • [187]
    Tuomi, P, Torsvik, T, Heldal, M, Bratbak, G (1997) Bacterial population dynamics in a meromictic lake. Appl. Environ. Microbiol. 63, 21812188.
  • [188]
    Weinbauer, M, Brettar, I, Höfle, M (2003) Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic waters. Limnol. Oceanogr. 48, 14571465.
  • [189]
    Hennes, K.P, Suttle, C.A, Chan, A.M (1995) Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Appl. Environ. Microbiol. 61, 36233627.
  • [190]
    Yager, P, Connelly, T, Mortazavi, B, Wommack, K, Bano, N, Bauer, J, Opsahl, S, Hollibaugh, J (2001) Dynamic bacterial and viral response to an algal bloom at subzero temperatures. Limnol. Oceanogr. 46, 790801.
  • [191]
    Wilhelm, S, Suttle, C (2000) Viruses as regulators of nutrient cycles in aquatic environments. In: Microbial Biosystems (Bell, C, Brylinsky, M, Johnson-Green, P, Eds.), pp.551–556 Atlantic Canada Society for Microbial Ecology, Halifax.
  • [192]
    Danovaro, R, Manini, E, Dell'Anno, A (2002) Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Appl. Environ. Microbiol. 68, 14681472.
  • [193]
    Paul, J.H, Rose, J.B, Jiang, S.C, Kellogg, C.A, Dickson, L (1993) Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl. Environ. Microbiol. 59, 718724.
  • [194]
    Maranger, R, Bird, D.F (1996) High concentrations of viruses in the sediments of Lake Gilbert, Québec. Microb. Ecol. 31, 141151.
  • [195]
    Drake, L.A, Choi, K.-H, Haskell, A.G.E, Dobbs, F.C (1998) Vertical profiles of virus-like particles and bacteria in the water column and sediments of Chesapeake Bay, USA. Aquat. Microb. Ecol. 16, 1725.
  • [196]
    Danovaro, R, Serresi, M (2000) Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl. Environ. Microbiol. 66, 18571861.
  • [197]
    Danovaro, R, Dell'Anno, A, Trucco, A, Serresi, M, Vanucci, S (2001) Determination of virus abundance in marine sediments. Appl. Environ. Microbiol. 67, 13841387.
  • [198]
    Hewson, I, O'Neil, J, Heil, C, Bratbak, G, Dennison, W (2001) Effects of concentrated viral communities on photosynthesis and community composition of co-occurring benthic microalgae and phytoplankton. Aquat. Microb. Ecol. 25, 110.
  • [199]
    Hewson, I, O'Neill, J.M, Fuhrman, J.A, Dennison, W.C (2001) Virus-like particle distribution and abundance in sediments and overmaying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46, 17341746.
  • [200]
    Lawrence, J, Chan, A, Suttle, C (2002) Viruses causing lysis of the toxic bloom-forming Heterosigma akashiwo (Raphidophyceae) are widespread in coastal sediments of British Columbia, Canada. Limnol. Oceanogr. 47, 545550.
  • [201]
    Peduzzi, P, Weinbauer, M.G (1993) Effect of concentrating the virus-rich 2–200 nm size fraction of seawater on the formation of algal flocs (marine snow). Limnol. Oceanogr. 38, 15621565.
  • [202]
    Chattopadhyay, S, Puls, R.W (2000) Forces dictating colloidal interactions between viruses and soil. Chemosphere 41, 12791286.
  • [203]
    Ashelford, K.E, Day, M.J, Fry, J.C (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 69, 285289.
  • [204]
    Williams, S, Mortimer, A, Manchester, L (1987) Ecology of soil bacteriophages. In: Phage Ecology (Goyal, S.M, Gerba, C.P, Bitton, G, Eds.), pp.136–156 John Wiley & Sons, New York.
  • [205]
    Hara, S, Koike, I, Terauchi, K, Kamiya, H, Tanoue, E (1996) Abundance of viruses in deep oceanic waters. Mar. Ecol. Prog. Ser. 145, 269277.
  • [206]
    Simon, M, Grossart, H.-P, Schweitzer, B, Ploug, H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175211.
  • [207]
    Lemke, M, Wickstrom, C, Leff, L (1997) Preliminary study on the distribution of viruses and bacteria in lotic environments. Arch. Hydrobiol. 141, 6774.
  • [208]
    Cottrell, M.T, Suttle, C.A (1991) Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 19.
  • [209]
    Moebus, K, Nattkemper, H (1983) Taxonomic investigations of bacteriophage sensitive bacteria isolated from marine waters. Helgoländer Meeresunters. 36, 357373.
  • [210]
    Moebus, K, Nattkemper, H (1981) Bacteriophage sensitivity patterns among bacteria isolated from marine waters. Helgoländer Meeresunters. 34, 375385.
  • [211]
    Moebus, K (1983) Lytic and inhibition responses to bacteriophages among marine bacteria, with special reference to the origin of phage–host systems. Helgoländer Meeresunters 36, 375391.
  • [212]
    Baross, J.A, Liston, J, Morita, R.Y (1978) Incidence of Vibrio parahaemolyticus bacteriophages and other Vibrio bacteriophages in marine samples. Appl. Environ. Microbiol. 36, 492499.
  • [213]
    Kellogg, C.A, Rose, J.B, Jiang, S.C, Thurmond, J.M, Paul, J.H (1995) Genetic diversity of related vibriophages isolated from marine environments around Florida and Hawaii, USA. Mar. Ecol. Prog. Ser. 120, 8998.
  • [214]
    Zhong, Y, Chen, F, Wilhelm, S, Poorvin, L, Hodson, R (2002) Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl. Environ. Microbiol. 68, 15761584.
  • [215]
    Wichels, A, Gerdts, G, Schütt, C (2002) Pseudoalteromonas sp. phages, a significant group of marine bacteriophages in the North Sea. Aquat. Microb. Ecol. 27, 233239.
  • [216]
    Azaiez, S.R.C, Fliss, I, Simard, R.E, Moineau, S (1998) Monoclonal antibodies raised against native major capsid proteins of lactococcal c2-like bacteriophages. Appl. Environ. Microbiol. 64, 42554259.
  • [217]
    Puig, A, Jofre, J, Araujo, R (1998) Use of oxyrase enzyme (Oxyrase®) for the detection of bacteriophages of Bacteroides fragilis in aerobic incubation conditions. J. Microbiol. Methods 31, 205207.
  • [218]
    Blasco, R, Murphy, M.J, Sanders, M.F, Squirrell, D.J (1998) Specific assays for bacteria using phage mediated release of adenylate kinase. J. Appl. Microbiol. 84, 661666.
  • [219]
    Labrie, S, Moineau, S (2000) Multiplex PCR for detection and identification of lactococcal bacteriophages. Appl. Environ. Microbiol. 66, 987994.
  • [220]
    Puig, M, Jofre, J, Girones, R (2000) Detection of phages infecting Bacteroides fragilis HSP40 using a specific DNA probe. J. Virol. Methods 88, 163173.
  • [221]
    Puig, M, Pina, S, Lucena, F, Jofre, J, Girones, R (2000) Description of a DNA amplification procedure for the detection of bacteriophages of Bacteroides fragilis HSP40 in environmental samples. J. Virol. Methods 89, 159166.
  • [222]
    Wilhelm, S.W, Weinbauer, M.G, Suttle, C.A, Pledger, R.J, Mitchell, D.L (1998) Measurements of DNA damage and photoreactivation imply that most viruses in marine surface waters are infective. Aquat. Microb. Ecol. 14, 215222.
  • [223]
    Suttle, C.A, Chan, A.M, Chen, F, Garza, D.R (1993) Cyanophages and sunlight: a paradox. In: Trends in Microbial Ecology (Guerrero, R, Pedrós-Alió, C, Eds.), pp.303–308 Spanish Society for Microbiology, Barcelona.
  • [224]
    Larsen, A, Castberg, T, Sandaa, R, Brussaard, C, Egge, J, Heldal, M, Paulino, A, Thyrhaug, R, Van Hannen, E, Bratbak, G (2001) Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 221, 4757.
  • [225]
    Castberg, T, Larsen, A, Sandaa, R, Brussaard, C, Egge, J, Heldal, M, Paulino, A, Thyrhaug, R, Van Hannen, E, Bratbak, G (2001) Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta). Mar. Ecol. Prog. Ser. 221, 3946.
  • [226]
    Øvreås, L, Bournde, D, Sandaa, R.-A, Casamayor, E, Benlloch, S, Goddard, V, Smerdon, G, Heldal, M, Thingstad, T.F (2003) Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquat. Microb. Ecol. 31, 109121.
  • [227]
    Van Etten, J.L, Lane, L.C, Meints, R.H (1991) Viruses and viruslike particles of eukaryotic algae. Microbiol. Rev. 55, 586620.
  • [228]
    Short, S.M, Suttle, C.A (2002) Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl. Environ. Microbiol. 68, 12901296.
  • [229]
    Wichels, A, Biel, S.S, Gelderblom, H.R, Brinkhoff, T, Muyzer, G, Schütt, C (1998) Bacteriophage diversity in the North Sea. Appl. Environ. Microbiol. 64, 41284133.
  • [230]
    Ashelford, K.E, Fry, J.C, Bailey, M.J, Jeffries, A.R, Day, M.J (1999) Characterization of six bacteriophages of Serratia liquefaciens CP6 isolated from the sugar beet phytosphere. Appl. Environ. Microbiol. 65, 19591965.
  • [231]
    Wilson, W.H, Joint, I.R, Carr, N.G, Mann, N.H (1993) Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. strain WH7803. Appl. Environ. Microbiol. 59, 37363742.
  • [232]
    Suzuki, M (1999) Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat. Microb. Ecol. 20, 261272.
  • [233]
    Pernthaler, J, Sattler, B, Simek, K, Schwarzenbacher, A, Psenner, R (1996) Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat. Microbiol. Ecol. 10, 255263.
  • [234]
    Pernthaler, J, Posch, T, Simek, K, Vrba, J, Amann, R, Psenner, R (1997) Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. Environ. Microbiol. 63, 596601.
  • [235]
    Simek, K, Vrba, J, Pernthaler, J, Posch, T, Hartman, P, Nemoda, J, Psenner, R (1997) Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Environ. Microbiol. 63, 587595.
  • [236]
    Hahn, M.W, Höfle, M.G (1998) Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio sp. CB5 in binary chemostat cultures. Appl. Environ. Microbiol. 64, 19101918.
  • [237]
    Hahn, M, Höfle, M (1999) Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl. Environ. Microbiol. 65, 48634872.
  • [238]
    Jürgens, K, Güde, H (1994) The potential importance of grazing-resistant bacteria in planktonic systems. Mar. Ecol. Prog. Ser. 112, 169188.
  • [239]
    Jürgens, K, Pernthaler, J, Schalla, S, Amann, R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65, 12411250.
  • [240]
    Moineau, S, Pandian, S, Klaenhammer, T (1994) Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome. Appl. Environ. Microbiol. 60, 18321841.
  • [241]
    Moineau, S, Pandian, S, Klaenhammer, T.R (1995) Specific chromosomal sequences can contribute to the appearance of a new lytic bacteriophage in Lactococcus. Dev. Biol. Stand. 85, 577580.
  • [242]
    Ohnishi, M, Kuokawa, K, Hayashi, T (2001) Diversification of Escherichia coli genomes: are bacteriophages the main contributors. Trends Microbiol. 9, 481485.
  • [243]
    Chen, F, Lu, J (2002) Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phage. Appl. Environ. Microbiol. 68, 25892594.
  • [244]
    Hutchinson, G. (1957). Concluding remarks. In: Cold Spring Harbor Symposium on Quantitative Biology, Vol. 22, pp. 415–427
  • [245]
    Farrah, S.R (1987) Ecology of phage in freshwater environments. In: Phage Ecology (Goyal, S.M, Gerba, C.P, Bitton, G, Eds.), pp.125–136 John Wiley & Sons, New York.
  • [246]
    Moebus, K (1987) Ecology of marine bacteriophages. In: Phage Ecology (Goyal, S.M, Gerba, C.P, Bitton, G, Eds.), pp.136–156 John Wiley & Sons, New York.
  • [247]
    Spencer, R. A marine bacteriophage. Nature. 175, 1955. 690
  • [248]
    Ruiz, G.M, Rawlings, T.K, Dobbs, F.C, Drake, L.A, Mullady, T, Huq, A, Colwell, R.R (2000) Global spread of microorganisms by ships. Nature 408, 4950.
  • [249]
    Azam, F, Long, R.A (2001) Sea snow microcosms. Nature 414, 495498.
  • [250]
    Middelboe, M (2000) Bacterial growth rate and marine virus–host dynamics. Microb. Ecol. 40, 114124.
  • [251]
    Wikner, J, Vallini, J.J, Steward, G.F, Smith, D.C, Azam, F (1993) Nucleic acids from the host bacterium as a major source of nucleotides for three marine bacteriophages. FEMS Microbiol. Ecol. 12, 237248.
  • [252]
    Kokjohn, T.A, Sayler, G.S, Miller, R.V (1991) Attachment and replication of Pseudomonas aeruginosa bacteriophages under conditions simulating aquatic environments. J. Gen. Microbiol. 137, 661666.
  • [253]
    Probst Ricciuti, C (1972) Host–virus interactions in Escherichia coli: effect of stationary phase on viral release from MS2-infected bacteria. J. Virol. 10, 162165.
  • [254]
    Schrader, H.S, Schrader, J.O, Walker, J.J, Wolf, T.A, Nickerson, K.W, Kokjohn, T.A (1997) Bacteriophage infection and multiplication occur in Pseudomonas aerigunosa starved for 5 years. Can. J. Microbiol. 43, 11571163.
  • [255]
    Anderson, T.F (1948) The growth of T2 virus on ultraviolet-killed host cells. J. Bacteriol. 56, 403410.
  • [256]
    Moebus, K (1996) Marine bacteriophage reproduction under nutrient-limited growth of host bacteria. II. Investigations with phage–host system [H3:H3/1]. Mar. Ecol. Prog. Ser. 144, 1322.
  • [257]
    Moebus, K (1996) Marine bacteriophage reproduction under nutrient-limited growth of host bacteria. I. Investigations with six phages. Mar. Ecol. Prog. Ser. 144, 112.
  • [258]
    Wilson, W, Joint, I, Carr, N.G, Mann, N.H (1996) The effect of phosphorus status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. J. Phycol. 32, 506516.
  • [259]
    Tuomi, P, Fagerbakke, K.M, Bratbak, G, Heldal, M (1995) Nutritional enrichment of a microbial community: the effects on activity, elemental composition, community structure and virus production. FEMS Microbiol. Ecol. 16, 123134.
  • [260]
    Smit, E, Wolters, A.C, Lee, H, Trevors, J.T, Van Elsas, J.D (1996) Interactions between a genetically marked Pseudomonas fluorescens strain and bacteriophage φR2f in soil: effects of nutrients, alginate encapsulation, and the wheat rhizosphere. Microb. Ecol. 31, 125140.
  • [261]
    Tuomi, P, Kuuppo, P (1999) Viral lysis and grazing loss of bacteria in nutrient- and carbon-manipulated brackish water enclosures. J. Plankton Res. 21, 923937.
  • [262]
    Bratbak, G, Egge, J.K, Heldal, M (1993) Viral mortality of the marine alga Emiliania huxleyi (Haptophycaea) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 3948.
  • [263]
    Wilson, W, Turner, S, Mann, N (1998) Population dynamics of phytoplankton and viruses in a phosphate-limited mesocosm and their effect on DMSP and DMS production. Estuar. Coast. Shelf Sci. 46, 4959.
  • [264]
    Rohwer, F, Segall, A, Steward, G, Seguritan, V, Breitbart, M, Wolven, F, Azam, F (2000) The complete genomic sequence of marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol. Oceanogr. 45, 408418.
  • [265]
    Howard-Jones, M, Frischer, M, Verity, P. Determinatining the physiological status of individual bacterial cells Paul, J, Ed., Methods in Microbiology. Vol. 30, 2001. Academic Press, San Diego. 175–206
  • [266]
    Zachary, A (1978) An ecological study of bacteriophages of Vibrio natriegens. Appl. Environ. Microbiol. 24, 321324.
  • [267]
    Doermann, A.H (1948) Lysis and lysis inhibition with Escherichia coli bacteriophage. J. Bacteriol. 55, 257276.
  • [268]
    Zachary, A (1976) Physiology and ecology of bacteriophages of the marine bacterium Beneckea natriegens: salinity. Appl. Environ. Microbiol. 31, 415422.
  • [269]
    Rao, V, Melnick, J. Environmental Virology. 1986. ASM Press, Washington. 88 p
  • [270]
    Kapuscinski, R.B, Michell, R (1980) Processes controlling virus inactivation in coastal waters. Water Res. 14, 363371.
  • [271]
    Rontó, G, Gáspár, S, Bérces, A (1992) Phages T7 in biological UV dose measurement. J. Photochem. Photobiol. 12, 285294.
  • [272]
    Rontó, G, Gáspár, S, Gróf, P, Bérces, A, Gugolya, Z (1994) Ultraviolet dosimetry in outdoor measurements based on bacteriophage T7 as a biosensor. Photochem. Photobiol. 59, 209214.
  • [273]
    Gáspár, S, Bérces, A, Rontó, G, Gróf, P (1996) Biological effectiveness of environmental radiation in aquatic systems, measurements by T7-phage sensor. J. Photchem. Photobiol. 32B, 183187.
  • [274]
    Regan, J.D, Carrier, W.L, Gucinski, H, Olla, B.L, Yoshida, H, Fujimura, R.K, Wicklund, R.I (1992) DNA as a solar dosimeter in the ocean. Photochem. Photobiol. 56, 3542.
  • [275]
    Wommack, K.E, Hill, R.T, Muller, T.A, Colwell, R.R (1996) Effects of sunlight on bacteriophage viability and structure. Appl. Environ. Microbiol. 62, 13361341.
  • [276]
    Weinbauer, M.G, Wilhelm, S.W, Garza, D.R, Suttle, C.A (1997) Photoreactivation compensates for UV damage and restores infectivity to natural marine viral communities. Appl. Environ. Microbiol. 63, 22002205.
  • [277]
    Noble, R.T, Fuhrman, J.A (1997) Virus decay and its causes in coastal waters. Appl. Environ. Microbiol. 63, 7783.
  • [278]
    Wilhelm, S.W, Weinbauer, M.G, Suttle, C.A, Jeffrey, W.H (1998) The role of sunlight in the removal and repair of viruses in the sea. Limnol. Oceanogr. 43, 586592.
  • [279]
    Garza, D.R, Suttle, C.A (1998) The effect of cyanophages on the mortality of Synechococcus sp. and selection for UV resistant viral communities. Microb. Ecol. 36, 281292.
  • [280]
    Wiggins, B.A, Alexander, M (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl. Environ. Microbiol. 49, 1923.
  • [281]
    Ogunseitan, O.A, Sayler, G.S, Miller, R.V (1990) Dynamic interactions of Pseudomonas aeruginosa and bacteriophages in lake water. Microb. Ecol. 19, 171185.
  • [282]
    Moebus, K (1992) Laboratory investigations on the survival of marine bacteriophages in raw and treated seawater. Helgoländer Meeresunters. 46, 251273.
  • [283]
    Bitton, G, Mitchell, R (1974) Effect of colloids on the survival of bacteriophages in seawater. Water Res. 8, 227229.
  • [284]
    Ripp, S, Miller, R.V (1995) Effects of suspended particles on the frequency of transduction among Pseudomonas aerugonosa in a freshwater environment. Appl. Environ. Microbiol. 61, 12141219.
  • [285]
    Vettori, C, Stotzky, G, Yoder, M, Gallori, E (1999) Interaction between bacteriophage PBS1 and clay minerals and transduction of Bacillus subtilis by clay–phage complexes. Environ. Microbiol 1, 347355.
  • [286]
    González, J.M., Suttle, C., Sherr, E.B. and Sherr, B.F. (1992). Grazing on viruses by marine phagotrophic protists. In: 1992 ASLO Meeting Abstract, Santa Fee, USA
  • [287]
    Sanders, M (1987) Bacteriophages of industrial importance. In: Phage Ecology (Goyal, S.M, Gerba, C.P, Bitton, G, Eds.), pp.211–243 John Wiley & Sons, New York.
  • [288]
    Forde, A, Fitzgerald, G (1999) Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek 76, 89113.
  • [289]
    Daly, C.D, Fitzgerald, G.F, Davis, R (1996) Biotechnology of lactic bacteria with special reference to bacteriophage resistance. Antonie van Leeuwenhoek 70, 99110.
  • [290]
    Lodics, T.A, Steenson, L.R (1993) Phage–host interactions in commercial mixed-strain dairy starter cultures: practical significance – a review. J. Dairy Sci. 76, 23802391.
  • [291]
    Lacqua, A., Wanner, O., Colangelo, T., Martinotti, M., Zehnder, A. and Landini, P. (2002). Exposure to bacteriophages stimulates biofilm formation in Escherichia coli. In: Eau-water-acqua-wasser. 61th Annual Meeting of the Swiss Society for Microbiology (Egli, T., Zehnder, A. and Munzinger, J., Eds.), p. 130 (abstract) Luzern
  • [292]
    Wilkinson, J.F (1958) The extracellular polysaccharides of bacteria. Bact. Rev. 22, 4673.
  • [293]
    Costerton, J.W, Cheng, K.-J, Geesey, G.G, Ladd, T.I, Nickel, J.C, Dasgupta, M, Marrie, T.J (1987) Bacterial biofilms in nature and desease. Ann. Rev. Microbiol. 41, 435464.
  • [294]
    Roberts, I.S (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50, 285315.
  • [295]
    Doolittle, M.M, Cooney, J.J, Caldwell, D.E (1995) Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can. J. Microbiol. 41, 1218.
  • [296]
    Hanlon, G.W, Denyer, S.P, Olliff, C.J, Ibrahim, L.J (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 67, 27462753.
  • [297]
    Heissenberger, A, Leppard, G, Herndl, G (1996) Ultrastructure of marine snow. II. Microbiological considerations. Mar. Ecol. Prog. Ser. 135, 299308.
  • [298]
    Heissenberger, A, Leppard, G.G, Herndl, G.J (1996) Relationship between the intracellular integrity and the morphology of the capsular envelope in attached and free-living marine bacteria. Appl. Environ. Microbiol. 62, 45214528.
  • [299]
    Stoderegger, K, Herndl, G.J (1998) Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton. Limnol. Oceanogr. 43, 877884.
  • [300]
    Cowen, J.P (1992) Morphological study of marine bacterial capsules: implications for marine aggregates. Mar. Biol. 114, 8589.
  • [301]
    Stoderegger, K.E, Herndl, G.J (1999) Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions. Mar. Ecol. Prog. Ser. 189, 916.
  • [302]
    Nimmich, W, Schmidt, G, Krallmann-Wenzel, U (1991) Two different Escherichia coli capsular polysaccharide depolymerases each associated with one of the coliphage phi K5 and phi K20. FEMS Microbiol. Lett. 66, 137141.
  • [303]
    Scholl, D, Rogers, S, Adhya, S, Merril, C.R (2001) Bacteriophage K1–5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J. Virol. 75, 25092515.
  • [304]
    Ravenscroft, N, Parolis, L.A.S, Parolis, H (1994) Bacteriophage degradation of Klebsiella K30 capsular polysaccharide. An NMR investigation of the 3,4-pyruvated galactose-containing repeating oligosaccharide. Carbohydr. Res. 254, 333340.
  • [305]
    Grimmecke, H, Knirel, Y, Shashkov, A, Kiesel, B, Lauk, W, Voges, M (1994) Structure of the capsular polysaccharide and the O-side-chain of the lipopolysaccharide from Acetobacter methanolicus MB 70, and of oligosaccharides resulting from their degradation by the bacteriophage Acm6. Carbohydrate Res. 253, 277282.
  • [306]
    Hänfling, P, Shashkov, A.S, Jann, B, Jann, K (1996) Analysis of the enzymatic cleavage (ß elimination) of the capsular K5 polysaccharide of Escherichia coli by the K5-specific coliphage: a reexamination. J. Bacteriol. 178, 47474750.
  • [307]
    Proctor, L.M, Fuhrman, J.A (1991) Roles of viral infection in organic particle flux. Mar. Ecol. Prog. Ser. 69, 133142.
  • [308]
    Karentz, D, Bothwell, M.L, Coffin, R.B, Hanson, A, Herndl, G.J, Kilham, S.S, Lesser, M.P, Lindell, M, Moeller, R.E, Morris, D.P, Neale, P.J, Sanders, R.W, Weiler, C.S, Wetzel, R.G (1994) Impact of UV-B radiation on pelagic freshwater ecosystems: report of working group on bacteria and phytoplankton. Arch. Hydrobiol. Beih. 43, 3169.
  • [309]
    Weinbauer, M.G, Wilhelm, S.W, Pledger, R, Mitchell, D, Suttle, C.A (1999) Sunlight-induced DNA damage and resistance in natural virus communities. Aquat. Microb. Ecol. 17, 111120.
  • [310]
    Hartman, P.S, Eisenstark, A (1982) Alteration of bacteriophage attachment capacity by near-UV irradiation. J. Virol. 43, 529532.
  • [311]
    Kellogg, C, Paul, J (2002) Degree of ultraviolet radiation damage and repair capabilities are related to G + C content in marine vibriophages. Aquat. Microb. Ecol. 27, 1320.
  • [312]
    Murray, A.G, Jackson, G.A (1993) Viral dynamics II: a model of the interaction of ultraviolet light and mixing processes on virus survival in seawater. Mar. Ecol. Prog. Ser. 102, 105114.
  • [313]
    Wilhelm, S, Jeffrey, W, Dean, A, Meador, J, Pakulski, J, Mitchell, D (2003) UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean. Aquat. Microb. Ecol. 31, 18.
  • [314]
    Friedberg, E.C, Walker, G.C, Siede, W. DNA Repair and Mutagenesis. 1995. ASM Press, Washington. 698 p
  • [315]
    Bernstein, C (1981) Deoxyribonucleic acid repair in bacteriophage. Microbiol. Rev. 45, 7298.
  • [316]
    Kuzminov, A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63, 751813.
  • [317]
    Dulbecco, R (1950) Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J. Bacteriol. 59, 329347.
  • [318]
    Dulbecco, R. Reactivation of ultraviolet-inactivated bacteriophage by visible light. Nature. 1949. 949–950
  • [319]
    Kreuzer, K.N, Drake, J.W (1994) Repair of lethal DNA damage. In: Molecular Biology of Bacteriophage T4 (Karam, J.D, Ed.), pp.89–97 ASM Press, Washington.
  • [320]
    Furuta, M, Schrader, J.O, Schrader, H.S, Kokjohn, T.A, Nyaga, S, McCullough, A.K, Lloyd, R.S, Burbank, D.E, Landstein, D, Lane, L, Van Etten, J.L (1997) Chlorella virus PBCV-1 encodes a homolog of the bacteriophage T4 UV damage repair gene denV. Appl. Environ. Microbiol. 63, 15511556.
  • [321]
    Shaffer, J.S, Jacobson, L.M, Schrader, J.O, Lee, K.W, Martin, E.L, Kokjohn, T.A (1999) Characterization of Pseudomonas aeruginosa bacteriophage UNL-1, a bacterial virus with a novel UV-A-inducible DNA damage reactivation phenotype. Appl. Environ. Microbiol. 65, 26062613.
  • [322]
    Tyrell, R.M (1979) Repair of near (365 nm) and far (254 nm)-UV damage to bacteriophage of Escherichia coli. Photochem. Photobiol. 29, 963970.
  • [323]
    Hearst, J.E (1995) The structure of photolyase: using photon energy for DNA repair. Science 268, 18581859.
  • [324]
    Herndl, G.H, Müller-Niklas, G, Frick, J (1993) Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature 362, 717719.
  • [325]
    Schrader, H.S, Schrader, J.O, Walker, J.J, Bruggeman, N.B, Vanderloop, J.M, Shaffer, J.J, Kokjohn, T.A (1995) Effects of host starvation on bacteriophage dynamics. In: Bacteria in Oligotrophic Environments (Morita, R.Y, Ed.), pp.368–385 Chapman & Hall, New York.
  • [326]
    Murray, A.G, Jackson, G.A (1992) Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar. Ecol. Prog. Ser. 89, 103116.
  • [327]
    Grossart, H.P, Steward, G.F, Martinez, J, Azam, F (2000) A simple, rapid method for demonstrating bacterial flagella. Appl. Environ. Microbiol. 66, 36323636.
  • [328]
    Ripp, S, Miller, R (1998) Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. Microbiology 144, 22252232.
  • [329]
    Ripp, S, Miller, R.V (1997) The role of pseudolysogeny in bacteriophage–host interactions in a natural freshwater environment. Microbiology 143, 20652070.
  • [330]
    Williamson, S.J, McLaughlin, M.R, Paul, J.H (2001) Interaction of the φHSIC virus with its host: lysogeny or pseudolysogeny. Appl. Environ. Microbiol. 67, 16821688.
  • [331]
    Beretta, E, Kuang, Y (1998) Modeling and analysis of a marine bacteriophage infection. Math. Biosci. 149, 5776.
  • [332]
    Baross, J.A, Liston, J, Morita, R.Y (1978) Ecological relationship between Vibrio parahaemolyticus and agar- digesting vibrios as evidenced by bacteriophage susceptibility patterns. Appl. Environ. Microbiol. 36, 500505.
  • [333]
    Koga, T, Toyoshima, S, Kawata, T (1982) Morphological varieties and host range of Vibrio parahaemolyticus bacteriophages isolated from seawater. Appl. Environ. Microbiol. 44, 466470.
  • [334]
    Moebus, K (1992) Further investigations on the concentration of marine bacteriophages in the water around Helgoland, with reference to the phage–host systems encountered. Helgoländer Meeresunters 46, 275292.
  • [335]
    Inoue, T, Matsuzaki, S, Tanaka, S (1995) A 26-kDa outer membrane protein, OmpK, common to Vibrio species is the receptor for a broad-host-range vibriophage, KVP40. FEMS Microbiol. Lett. 125, 101106.
  • [336]
    Inoue, T, Matsuzaki, S, Tanaka, S (1995) Cloning and sequence analysis of Vibrio parahaemolyticus ompK gene encoding a 26-kDa outer membrane protein, OmpK, that serves as receptor for a broad-host-range vibriophage, KVP40. FEMS Microbiol. Lett. 134, 245249.
  • [337]
    Haggard-Ljungquist, E, Halling, C, Calendar, R (1992) DNA sequences of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail genes among unrelated bacteriophages. J. Bacteriol. 174, 14621477.
  • [338]
    Jensen, E, Schrader, H, Rieland, B, Thompson, T, Lee, K, Nickerson, K, Kokjohn, T (1998) Prevalence of broad-host-range lytic bacteriophages of Spherotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 64, 575580.
  • [339]
    Chiura, H.X (1997) Generalized gene transfer by virus-like particles from marine bacteria. Aquat. Microb. Ecol. 13, 7583.
  • [340]
    Campbell, A (1994) Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol. 48, 193222.
  • [341]
    Campbell, A (1994) Bacteriophage ecology, evolution and speciation. In: Encyclopedia of Virology (Webster, R, Granoff, A, Eds.), pp.81–83 Academic Press, London.
  • [342]
    Levin, B.R, Steward, F.M, Chao, L (1977) Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Amer. Natur. 111, 324.
  • [343]
    Chao, L, Levin, B.R, Stewart, F.M (1977) A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58, 369378.
  • [344]
    Schrag, S, Mittler, J (1996) Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria–phage interactions. Am. Nat. 148, 348377.
  • [345]
    Wick, L.M, Quadroni, M, Egli, T (2001) Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ. Microbiol. 3, 588599.
  • [346]
    Middelboe, M, Hagström, A, Blackburn, N, Sinn, B, Fischer, U, Borch, N, Pinhassi, J, Simu, K, Lorenz, M (2001) Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Microb. Ecol. 42, 395406.
  • [347]
    Weigle, J.J, Delbrück, M (1951) Mutual exclusion between an infecting phage and carried phage. J. Bacteriol. 62, 301318.
  • [348]
    Korona, R, Levin, B.R (1993) Phage-mediated selection and the evolution and maintenance of restriction–modification. Evolution 47, 556575.
  • [349]
    Turner, P, Burch, C, Hanley, K, Chao, L (1999) Hybrid frequencies confirm limit to coinfection in the RNA bacteriophage φ6. J. Virol. 73, 24202424.
  • [350]
    Ashelford, K.E, Norris, S.J, Fry, J.C, Bailey, M.J, Day, M.J (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl. Environ. Microbiol. 66, 41934199.
  • [351]
    Edlin, G, Lin, L, Bitner, R (1977) Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J. Virol. 21, 560564.
  • [352]
    Lin, L, Bitner, R, Edlin, G (1977) Increased reproductive fitness of Escherichia coli lambda lysogens. J. Virol. 21, 554559.
  • [353]
    Edlin, G, Lin, L, Kudra, R (1975) λ Lysogens of E. coli reproduce more rapidly than non-lysogens. Nature 255, 735737.
  • [354]
    DeFilippis, V, Villarreal, L (2000) An introduction to the evolutionary ecology of viruses. In: Viral Ecology (Hurst, C, Ed.), pp.125–208 Academic Press, San Diego.
  • [355]
    Lindqvist, B, Deho, G, Calendar, R (1993) Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol. Rev. 57, 683702.
  • [356]
    Daniels, L.L, Wais, A.C (1990) Ecophysiology of bacteriophage S5100 infecting Halobacterium cutirubrum. Appl. Environ. Microbiol. 56, 36053608.
  • [357]
    Lenski, R.E (1984) Coevolution of bacteria and phage: are there endless cycles of bacterial defenses and phage counter defenses. J. Theor. Biol. 108, 319325.
  • [358]
    Lenski, R.E, Levin, B.R (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125, 585602.
  • [359]
    Burroughs, N.J, Marsh, P, Wellington, E.M (2000) Mathematical analysis of growth and interaction dynamics of streptomycetes and a bacteriophage in soil. Appl. Environ. Microbiol. 66, 38683877.
  • [360]
    Lederberg, J (1997) Infectious disease as an evolutionary paradigm. Emerg. Infect. Dis. 3, 417423.
  • [361]
    Hendrix, R.W, Lawrence, J.G, Hatfull, G.F, Casjens, S (2000) The origins and ongoing evolution of viruses. Trends Microbiol. 8, 504508.
  • [362]
    Weinbauer, M.G, Höfle, M.G (1998) Distribution and life strategies of two bacterial populations in a eutrophic lake. Appl. Environ. Microbiol. 64, 37763783.
  • [363]
    Ashelford, K.E, Day, M.J, Bailey, M.J, Lilley, A.K, Fry, J.C (1999) In situ population dynamics of bacterial viruses in a terrestrial environment. Appl. Environ. Microbiol. 65, 169174.
  • [364]
    DuBow, M (1994) Bacterial identification – use of bacteriophages. In: Encyclopedia of Virology (Webster, R, Granoff, A, Eds.), pp.78–81 Academic Press, London.
  • [365]
    Wells, M.L, Goldberg, E.D (1991) Occurrence of small colloids in sea water. Nature 353, 342344.
  • [366]
    Alldredge, A.L, Passow, U, Logan, B.E (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. 40, 11311140.
  • [367]
    Nagata, T, Kirchman, D (1997) Roles of submicron particles and colloids in microbial food webs and biogeochemical cycles within marine environments. Adv. Microb. Ecol. 15, 81103.
  • [368]
    Yamasaki, A, Fukuda, H, Fukuda, R, Miyajima, T, Nagata, T, Ogawa, H, Koike, I (1998) Submicrometer particles in the northwest Pacific coastal environments: abundance, size distribution, and biological origins. Limnol. Oceanogr. 43, 536542.
  • [369]
    Sieburth, J.M (1987) Contrary habitats for redox-specific processes: methanogenesis in oxic waters and oxidation in anoxic waters. In: Microbes in the Sea (Sleigh, M.A, Ed.), pp.11–38 Halsted Press, Cichester.
  • [370]
    Müller-Niklas, G, Schuster, S, Kaltenböck, E, Herndl, G.J (1994) Organic content and bacterial metabolism in amorphous aggregations of the northern Adriatic Sea. Limnol. Oceanogr. 39, 5868.
  • [371]
    DeLong, E.F, Franks, D.G, Alldregde, A.L (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38, 924934.
  • [372]
    Rath, J, Wu, K.Y, Herndl, G.J, DeLong, E.F (1998) High phylogenetic diversity in a marine-snow-associated bacterial assemblage. Aquat. Microb. Ecol. 14, 261269.
  • [373]
    Schweitzer, B, Huber, I, Amann, R, Ludwig, W, Simon, M (2001) alpha- and beta-proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl. Environ. Microbiol. 67, 632645.
  • [374]
    Lammers, W.T (1992) Stimulation of bacterial cytokinesis by bacteriophage predation. Hydrobiologia 235/236, 261265.
  • [375]
    Guixa-Boixereu, N, Vaqué, D, Gasol, J, Sánchez-Cámara, J, Pedrós-Alió, C (2001) Viral distribution and activity in Antarctic waters. Deep Sea Res. II 49, 827845.
  • [376]
    Moebus, K (1997) Investigations of the marine lysogenic bacterium H24. III. Growth of bacteria and production of phage under nutrient-limited conditions. Mar. Ecol. Prog. Ser. 148, 241250.
  • [377]
    Moebus, K (1997) Investigations of the marine lysogenic bacterium H24. I. General description of the phage–host system. Mar. Ecol. Prog. Ser. 148, 217228.
  • [378]
    Moebus, K (1997) Investigations of the marine lysogenic bacterium H24. II. Development of pseudolysogeny in nutrient-rich broth culture. Mar. Ecol. Prog. Ser. 148, 229240.
  • [379]
    Daniels, L.L, Wais, A.C (1998) Virulence in phage populations infecting Halobacterium cutirubrum. FEMS Microbiol. Ecol. 25, 129134.
  • [380]
    Torsvik, T, Dundas, I (1980) Persisting phage infection in Halobacterium salinarium str.1. J. Gen. Virol. 47, 2936.
  • [381]
    Jiang, S.C, Paul, J.H (1998) Significance of lysogeny in the marine environments: studies with isolates and a model of lysogenic phage production. Microb. Ecol. 35, 235243.
  • [382]
    Maranger, R, del Giorgio, P.A, Bird, D.F (2002) Accumulation of damaged bacteria and viruses in lake water exposed to solar radiation. Aquat. Microb. Ecol. 28, 213227.
  • [383]
    Williamson, S.J, Houchin, L.A, McDaniel, L, Paul, J.H (2002) Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl. Environ. Microbiol. 68, 43074314.
  • [384]
    Ortmann, A, Lawrence, J, Suttle, C (2002) Lysogeny and lytic viral production during a bloom of the cyanobacterium Synechococcus spp. Microb. Ecol. 43, 225231.
  • [385]
    Ohki, K, Fujita, Y (1996) Occurrence of a marine cyanophage lysogenizing the marine cyanophyte Phormidium persicinum. J. Phycol. 32, 365370.
  • [386]
    Ohki, K (1999) A possible role of temperate phage in the regulation of Trichodesmium biomass. Bull. Inst. océanogr. Monaco 19, 287291.
  • [387]
    McDaniel, L, Houchin, L, Williamson, S, Paul, J. Lysogeny in marine Synechococcus. Nature. 415, 2002. 496
  • [388]
    Steward, F.M, Levin, B.R (1984) The population biology of bacterial viruses: why be temperate. Theor. Popul. Biol. 26, 93117.
  • [389]
    Echols, H (1971) Lysogeny: viral repression and site-specific recombination. Ann. Rev. Biochem. 40, 827854.
  • [390]
    Echols, H (1972) Developmental pathways for the temperate phage: lysis vs lysogeny. Ann. Rev. Genet. 6, 157190.
  • [391]
    Egli, T (1995) The ecological role and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv. Microb. Ecol. 14, 305386.
  • [392]
    Marsh, P, Toth, I, Meijer, M, Schilhabel, M, Wellington, E (1993) Survival of the temperate actinophage φC31 and Streptomyces lividans in soil and the effects of competition and selection on lysogens. FEMS Microbiol. Ecol. 13, 1322.
  • [393]
    Herron, P, Wellington, E (1994) Population dynamics of phage–host interactions and phage conversion of streptomycetes in soil. FEMS Microbiol. Ecol. 14, 2532.
  • [394]
    Bohannan, B.J.M, Lenski, R.E (1997) Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78, 23032315.
  • [395]
    Wilson, W.H, Mann, N.H (1997) Lysogenic and lytic viral production in marine microbial communities. Aquat. Microb. Ecol. 13, 95100.
  • [396]
    Gottesman, M, Oppenheim, A (1994) Lysogeny and prophage. In: Encyclopedia of Virology (Webster, R.G, Granoff, A, Eds.), pp.814–823 Academic Press, London.
  • [397]
    Kokjohn, T.A, Miller, R.V (1988) Characterization of the Pseudomonas aeruginosa recA gene: the Les phenotype. J. Bacteriol. 170, 578582.
  • [398]
    Clarke, K (1998) Virus particle production in lysogenic bacteria exposed to protozoan grazing. FEMS Microbiol. Lett. 166, 11801777.
  • [399]
    Cannon, R.E (1987) Cyanophage ecology. In: Phage Ecology (Goyal, S.M, Gerba, C.P, Bitton, G, Eds.), pp.245–265 Wiley-Interscience, New York.
  • [400]
    Corpe, W, Jensen, T (1996) The diversity of bacteria, eukaryotic cells and viruses in an oligotrophic lake. Appl. Microbiol. Biotechnol. 46, 622630.
  • [401]
    Abedon, S.T (1989) Selection for bacteriophage latent period length by bacterial density: a theoretical examination. Microb. Ecol. 18, 7988.
  • [402]
    Abedon, S.T, Herschler, T.D, Stopar, D (2001) Bacteriophage latent-period evolution as a response to resource availability. Appl. Environ. Microbiol. 67, 42334241.
  • [403]
    Poindexter, J (1981) Oligotrophy. Feast and famine existence. Adv. Microb. Ecol. 5, 6389.
  • [404]
    Schut, F, Prins, R.A, Gottschal, J.C (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat. Microb. Ecol. 12, 177202.
  • [405]
    Andrews, J.H, Harris, R.F (1986) r- and K-selection and microbial ecology. Adv. Microb. Ecol. 9, 99147.
  • [406]
    Velicer, G, Schmidt, T, Lenski, R (1999) Application of traditional and phylogenetically based comparative methods to test for a trade-off in bacterial growth rate at low versus high substrate concentration. Microb. Ecol. 38, 191200.
  • [407]
    Velicer, G, Lenski, R (1999) Evolutionary trade-offs under conditions of resource abundance and scarcity: experiments with bacteria. Ecology 80, 11681179.
  • [408]
    Hedges, J.I (1992) Global biogeochemical cycles: progress and problems. Mar. Chem. 39, 6793.
  • [409]
    Benner, R, Pakulski, J.D, McCarthy, M, Hedges, J.I, Hatcher, P.G (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255, 15611564.
  • [410]
    McCarthy, M.D, Hedges, J.I, Benner, R (1998) Major bacterial contribution to marine dissolved organic nitrogen. Science 281, 231234.
  • [411]
    Tanoue, E, Ishii, M, Midorikawa, T (1996) Discrete dissolved and particulate proteins in oceanic waters. Limnol. Oceanogr. 41, 13341343.
  • [412]
    Boon, J.J, Klap, V.A, Eglington, T.I (1998) Molecular characterization of microgram amounts of oceanic colloidal organic matter by direct temperature-resolved ammonia chemical ionization mass spectrometry. Org. Geochem. 29, 10511061.
  • [413]
    Ogawa, H, Amagai, Y, Koike, I, Kaiser, K, Benner, R (2001) Production of refractory dissolved organic matter by bacteria. Science 292, 917920.
  • [414]
    Fenchel, T (1994) Microbial ecology on land and sea. Phil. Trans. R. Soc. Lond. B 343, 5156.
  • [415]
    Weinbauer, M.G, Peduzzi, P (1995) Effect of virus-rich high molecular weight concentrates of seawater on the dynamics of dissolved amino acids and carbohydrates. Mar. Ecol. Prog. Ser. 127, 245253.
  • [416]
    Noble, R.T, Middelboe, M, Fuhrman, J.A (1999) Effects of viral enrichment on the mortality and growth of heterotrophic bacterioplankton. Aquat. Microb. Ecol. 18, 113.
  • [417]
    Pesan, B.F, Weinbauer, M.G, Peduzzi, P (1994) Significance of the virus-rich 2–200 nm size fraction of seawater for heterotrophic flagellates. I. Impact on growth. PSNZI Mar. Ecol. 15, 281290.
  • [418]
    Suttle, C.A (1992) Inhibition of photosynthesis in phytoplankton by the submicron size fraction concentrated from seawater. Mar. Ecol. Prog. Ser. 87, 105112.
  • [419]
    Hewson, I, O'Neil, J, Dennison, W (2001) Virus-like particles associated with Lyngbya majuscula (Cyanophyta, Oscillatoria) bloom decline in Moreton Bay, Australia. Aquat. Microb. Ecol. 25, 207213.
  • [420]
    Pedrós-Alió, C, Calderón-Paz, J, Gasol, J (2000) Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton. FEMS Microbiol. Ecol. 32, 157165.
  • [421]
    Bohannan, B, Lenski, R (2000) The relative importance of competition and predation varies with productivity in a model community. Am. Nat. 156, 329340.
  • [422]
    Fenchel, T, Kristensen, L.D, Rasmussen, L (1990) Water column anoxia: vertical zonation of planktonic protozoa. Mar. Ecol. Prog. Ser. 62, 110.
  • [423]
    Middelboe, M, Jørgensen, N.O.G, Kroer, N (1996) Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl. Environ. Microbiol. 62, 19911997.
  • [424]
    Murray, A.G, Eldridge, P.M (1994) Marine viral ecology: incorporation of bacteriophage into the microbial planktonic food web paradigm. J. Plankton Res. 16, 627641.
  • [425]
    Weinbauer, M., Herndl, G. (2002) Viruses and heterotrophic microplankton. In: Marine Ecology (Duarte, C.M., Ed.) Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, [http://www.eolss.net]
  • [426]
    Paul, J.H, Sullivan, M.B, Segall, A.M, Rohwer, F (2002) Marine phage genomics. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 133, 463476.
  • [427]
    Riemann, L, Middelboe, M (2002) Viral lysis of marine bacterioplankton: implications for organic matter cycling and bacterial clonal composition. Ophelia 56, 5768.
  • [428]
    Blackburn, N, Zweifel, U.L, Hagström, Å (1996) Cycling of marine dissolved organic matter. II. A model analysis. Aquat. Microb. Ecol. 11, 7990.
  • [429]
    Zweifel, U.L, Blackburn, N, Hagström, Å (1996) Cycling of marine dissolved organic matter. I. An experimental system. Aquat. Microb. Ecol. 11, 6577.
  • [430]
    Gobler, C.J, Hutchins, D.A, Fisher, N.S, Cosper, E.M, Sañudo-Wilhelm, S (1997) Release and bioavailability of C, N, P, Se and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 14921504.
  • [431]
    Brussaard, C.P.D, Kempers, R.S, Kop, A.J, Riegman, R, Heldal, M (1996) Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat. Microb. Ecol. 10, 105113.
  • [432]
    Smith, D.C, Simon, M, Alldredge, A.L, Azam, F. Intense hydrolytic enzyme activity on marine snow aggregates and implication for rapid particle dissolution. Nature. 359, 1992. 139142
  • [433]
    Karner, M, Herndl, G.J (1992) Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Mar. Biol. 113, 341347.
  • [434]
    Biddanda, B.A (1985) Microbial synthesis of macroparticulate matter. Mar. Ecol. Prog. Ser. 20, 241251.
  • [435]
    Shibata, A, Kogure, K, Koike, I, Ohwada, K (1997) Formation of submicron colloidal particles from marine bacteria by viral infection. Mar. Ecol. Prog. Ser. 155, 303307.
  • [436]
    Balch, W, Vaughn, J, Novotny, J, Drapeau, D, Vaillancourt, R, Lapierre, J, Ashe, A (2000) Light scattering by viral suspensions. Limnol. Oceanogr. 45, 492498.
  • [437]
    Azam, F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694696.
  • [438]
    Li, W.K.W, Rao, D.V.S, Harrison, W.G, Smith, J.C, Cullen, J.J, Irvin, B, Platt, T (1983) Autotrophic picoplankton in the tropical ocean. Science 219, 292295.
  • [439]
    Liu, H, Nolla, H.A, Campbell, L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 3947.
  • [440]
    Evans, C, Archer, S, Jacquet, S, Wilson, W (2003) Direct estimates of the contribution of viral lysis and microzooplnakton grazing to the decline of a Micromonas sp. population. Aquat. Microb. Ecol. 30, 207219.
  • [441]
    Bratbak, G, Levasseur, M, Michaud, S, Cantin, G, Fernández, E, Heimdal, B.R, Heldal, M (1995) Viral activity in relation to Emiliania huxleyi blooms: a mechanism of DMSP release. Mer. Ecol. Prog. Ser. 128, 133142.
  • [442]
    Hill, R.W, White, B.A, Cottrell, M.T, Dacey, J.W.H (1998) Virus-mediated total release of dimethylsulfoniopropionate from marine phytoplankton: a potential climate process. Aquat. Microb. Ecol. 14, 16.
  • [443]
    Duckworth, D.H (1970) Biological activity of bacteriophage ghosts and “take-over” of host functions by bacteriophage. Bacteriol. Rev. 34, 344363.
  • [444]
    Winkler, H.H, Duckworth, D.H (1971) Metabolism of T4 bacteriophage ghost-infected cells: effects of bacteriophage and ghosts on the uptake of carbohydrates in Escherichia coli. Brit. J. Bacteriol. 107, 259267.
  • [445]
    Baba, T, Schneewind, O (1998) Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol. 6, 6671.
  • [446]
    Riley, M.A, Gordon, D.M (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7, 129133.
  • [447]
    Hirayama, S, Ueda, R, Sugata, K, Kamiyoshi, H (1993) Production of bacteriolytic enzyme by bacteriophage from seawater. Biosci. Biotech. Biochem. 57, 21662167.
  • [448]
    Maiti, M (1978) Mode of action of bacteriophage phi 149 on cholera and El Tor vibrios. Can. J. Microbiol. 24, 15831589.
  • [449]
    Fuhrman, J, Noble, R (2000) Causative agents of bacterial mortality and the consequences to marine food webs. In: Microbial Biosystems (Bell, C, Brylinsky, M, Johnson-Green, P, Eds.), pp.145–151 Atlantic Canada Society for Microbial Ecology, Halifax.
  • [450]
    Saye, D.J, Ogunseitan, O, Sayler, G.S, Miller, R.V (1987) Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and natural microbial community on transduction in Pseudomnonas aeruginosa. Appl. Environ. Microbiol. 53, 98979995.
  • [451]
    Saye, D.J, Ogunseitan, O.A, Sayler, G.S, Miller, R.V (1990) Transduction of linked chromosomal genes between Pseudomonas aeruginosa strains during incubation in situ in a freshwater habitat. Appl. Environ. Microbiol. 56, 140145.
  • [452]
    Paul, J.H (1999) Microbial gene transfer. J. Mol. Microbiol. Biotechnol. 1, 4550.
  • [453]
    Davison, J (1999) Genetic exchange between bacteria in the environment. Plasmid 42, 7391.
  • [454]
    Jiang, S.C, Paul, J.H (1998) Gene transfer by transduction in the marine environment. Appl. Environ. Microbiol. 64, 27802787.
  • [455]
    Nielsen, K.M, Bones, A.M, Smalla, K, Van Elsas, J.D (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria – a rare event. FEMS Microbiol. Rev. 22, 79103.
  • [456]
    Chiura, H, Tagaki, J (1994) Phage-like particles production and gene transfer by marine bacteria. Bull. Jpn. Soc. Microb. Ecol. 9, 7590.
  • [457]
    Schicklmaier, P, Schmieger, H (1995) Frequency of generalized transducing phages in natural isolates of the Salmonella typhimurium complex. Appl. Environ. Microbiol. 61, 16371640.
  • [458]
    Lang, A.S, Beatty, J.T (2001) The gene transfer agent of Rhodobacter capsulatus and “constitutive transduction” in prokaryotes. Arch. Microbiol. 175, 241249.
  • [459]
    Ripp, S, Ogunseitan, O.A, Miller, R.V (1994) Transduction of a freshwater microbial community by a new Pseudomonas aeruginosa generalized transducing phage, UT1. Mol. Ecol. 3, 121126.
  • [460]
    Sander, M, Schmieger, H (2001) Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl. Environ. Microbiol. 67, 14901493.
  • [461]
    Waldor, M.K, Mekalanos, J.J (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 19101914.
  • [462]
    Cheetham, B, Katz, M (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18, 201208.
  • [463]
    Lorenz, M.G, Wackernagel, W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microb. Rev. 58, 563602.
  • [464]
    Trevors, J (1996) DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip. Antonie van Leeuwenhoek 70, 110.
  • [465]
    Jiang, S.C, Paul, J.H (1995) Viral contribution to dissolved DNA in the marine environment as determined by differential centrifugation and kingdom probing. Appl. Environ. Microbiol. 61, 317325.
  • [466]
    Weinbauer, M.G, Peduzzi, P (1995) Comments on the determination of nucleic acids in natural waters by the CTAB–DABA–orcinol method. Sci. Total Environ. 177, 97103.
  • [467]
    Beebee, T.J.C (1993) Identification and analysis of nucleic acids in natural freshwaters. Sci. Total Environ. 135, 123129.
  • [468]
    Beebee, T.J.C (1991) Analysis, purification and quantification of extracellular DNA from aquatic environments. Freshwater Biol. 25, 525532.
  • [469]
    Maruyama, A, Oda, M, Higashihara, T (1993) Abundance of virus-sized non-DNase-digestible (coated DNA) in eutrophic seawater. Appl. Environ. Microbiol. 59, 712717.
  • [470]
    Siuda, W, Chróst, R (2000) Concentration and susceptibility of dissolved DNA for enzyme degradation in lake water – some methodological remarks. Aquat. Microb. Ecol. 21, 195201.
  • [471]
    Turk, V, Rehnstam, A.-S, Lundberg, E, Hagström, Å (1992) Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorus regeneration. Appl. Environ. Microbiol. 58, 37443750.
  • [472]
    Alsonso, M, Rodriguez, V, Rodriguez, J, Borrego, J (2000) Role od ciliates, flagellates and bacteriophages on the mortality of marine bacteria and on dissolved-DNA concentration in laboratory experimental systems. J. Exp. Mar. Biol. Ecol. 244, 239252.
  • [473]
    Reisser, W, Grein, S, Krambeck, C (1993) Extracellular DNA in aquatic ecosystems may in part be due to phycovirus activity. Hydrobiologia 252, 199201.
  • [474]
    Whitman, W, Coleman, D, Wiebe, W (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95, 65786583.
  • [475]
    Jain, R, Rivera, M.C, Lake, J.A (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96, 38013806.
  • [476]
    Doolittle, W.F (1999) Phylogenetic classification and the universal tree. Science 284, 21242129.
  • [477]
    Arber, W (1994) Bacteriophage transduction. In: Encyclopedia of Virology (Webster, R, Granoff, A, Eds.), pp.107–113 Academic Press, London.
  • [478]
    Replicon, J, Frankfater, A, Miller, R (1995) A continuous culture model to examine factors that affect transduction among Pseudomonas aeruginosa strains in freshwater environments. Appl. Environ. Microbiol. 61, 33593366.
  • [479]
    Thingstad, T.F, Lignell, R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 1927.
  • [480]
    Thingstad, T (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 13201328.
  • [481]
    Hutchinson, G (1961) The paradox of the plankton. Am. Natur. 95, 137145.
  • [482]
    Herndl, G, Weinbauer, M (2003) Marine microbial food web structure and function. In: Marine Science Frontiers for Europe (Wefer, G, Lamy, F, Mantoura, F, Eds.), pp.265–277 Springer, Berlin.
  • [483]
    Weinbauer, M. and Höfle, M. (2001). Testing the hypothesis that viral lysis influences bacterial diversity. Abstract. Meeting of the American Society for Limnology and Oceanography, Albuquerque, USA
  • [484]
    Pinhassi, J, Azam, F, Hemphälä, J, Long, R.A, Martinez, J, Zweifel, U.L, Hagström, Å (1999) Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquat. Microb. Ecol. 17, 1326.
  • [485]
    Pinhassi, J, Hagström, Å (2000) Seasonal successions in marine bacterioplankton. Aquat. Microb. Ecol. 21, 245256.
  • [486]
    Van Hannen, E.J, Zwart, G, Van Agterveld, M.P, Gons, H.J, Ebert, J, Laanbroek, H.J (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl. Environ. Microbiol. 65, 795801.
  • [487]
    Hantula, J, Kurki, A, Vuoriranta, P, Bamford, D.H (1991) Ecology of bacteriophages infecting activated sludge bacteria. Appl. Environ. Microbiol. 57, 21472151.
  • [488]
    Bohannan, B, Lenski, R (1999) Effect of prey heterogeneity on the response of a model food chain to resource enrichment. Am. Nat. 153, 7382.
  • [489]
    Brüssow, H, Bruttin, A, Desiere, F, Lucchini, S, Foley, S (1998) Molecular ecology and evolution of Streptococcus thermophilus bacteriophages – a review. Virus Genes 16, 95109.
  • [490]
    Neve, H, Zenz, K.I, Desiere, F, Koch, A, Heller, K.J, Brüssow, H (1998) Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and Sfi21: implications for the modular theory of phage evolution. Virology 241, 6172.
  • [491]
    Hendrix, R (1999) The long evolutionary reach of viruses. Curr. Biol. 9, R9914R9917.
  • [492]
    Brüssow, H, Hendrix, R.W (2002) Phage genomics: small is beautiful. Cell 108, 1316.
  • [493]
    Hambly, E, Tétart, F, Desplats, C, Wilson, W, Krisch, H, Mann, N (2001) A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc. Natl. Acad. Sci. USA 98, 1141111416.
  • [494]
    Begon, M, Harper, J, Townsend, C. Ecology: Individuals, Populations and Communities. 1999. Blackwell Science, Oxford. 1068 p
  • [495]
    Loreau, M (1998) Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl. Acad. Sci. USA 95, 56325636.
  • [496]
    Tilman, D (1996) Biodiversity: population versus ecosystem stability. Ecology 77, 350363.
  • [497]
    Alonso, M, Jiminez-Gomez, F, Rodriguez, J, Borrego, J (2001) Distribution of virus-like particles in an oligotrophic marine environment (Alboran Sea, Western Mediterranean). Microb. Ecol. 42, 407415.
  • [498]
    Bettarel, Y, Amblard, C, Sime-Ngando, T, Carrias, J.F, Sargos, D, Garabetian, F, Lavandier, P (2003) Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin. Microb. Ecol. 45, 119127.