SEARCH

SEARCH BY CITATION

References

  • [1]
    Ratcliffe, N. (1985) Invertebrate immunity – a primer for the non-specialist. Immunol. Lett. 10, 253270.
  • [2]
    Vilmos, P., Kurucz, E. (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol. Lett. 62, 5966.
  • [3]
    Boman, H.G., Hultmark, D. (1987) Cell-free immunity in insects. Ann. Rev. Microbiol. 41, 103126.
  • [4]
    Klein, J. (1997) Homology between immune responses in vertebrates and invertebrates: does it exist. Scand. J. Immunol. 46, 558564.
  • [5]
    Arala-Chaves, M., Sequeira, T. (2000) Is there any adaptive immunity in invertebrates. Aquaculture 191, 247258.
  • [6]
    Salzet, M. (2001) Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. TRENDS Immunol. 22, 285288.
  • [7]
    Hoffman, J. (1995) Innate immunity of insects. Curr. Opin. Immunol. 7, 410.
  • [8]
    Fallon, A., Sun, D. (2001) Exploration of mosquito immunity using cells in culture. Insect Biochem. Mol. Biol. 29, 965972.
  • [9]
    Kimbrell, D.A., Beutler, B. (2001) The evolution and genetics of innate immunity. Nat. Rev. Genet. 2, 256267.
  • [10]
    Levy, J.A. (2001) The importance of the innate immune system in controlling HIV infection and disease. TRENDS Immunol. 22, 312316.
  • [11]
    Clarkson, J.M., Charnley, A.K. (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 4, 197203.
  • [12]
    Clarkson, J., Screen, S., Bailey, A., Cobb, B. and Charnley, K. (1998) Fungal pathogenesis in insects. In: Molecular Variability of Fungal Pathogens (Bridge, P., Couteaudier, Y. and Clarkson, J., Eds.), pp. 83–93. CAB International (Chapter 6)
  • [13]
    Lecuona, R., Clement, J.M., Riba, G., Joulie, C., Juarez, P. (1997) Spore germination and hyphal growth of Beauveria sp. on insect lipids. J. Econ. Entomol. 90, 119123.
  • [14]
    Teetor-Barsch, A., Roberts, D.W. (1983) Entomogenous Fusarium species. Mycopathologia 43, 423429.
  • [15]
    Matha, V., Mracek, Z. (1984) Changes in haemocyte counts in Galleria mellonella (L) (Lepidoptera: Galleriidae) larvae infected with Steinernema sp. (Nematoda: steinernematidae). Nematology 30, 8689.
  • [16]
    Morton, D., Dunphy, G., Chadwick, J. (1987) Reactions of haemocytes of immune and non-immune Galleria mellonella larvae to Proteus mirabilis. Develop. Comparat. Immunol. 11, 4755.
  • [17]
    Engstrom, P., Carlsson, A., Engstrom, A., Tao, Z., Bennich, H. (1984) The anti-bacterial effect of attacins from the silk moth Hyalophora cecropia is detected against the outer membrane of Escherichia coli. EMBO J. 3, 33473351.
  • [18]
    Gagen, S.J., Ratcliffe, N.A. (1976) Studies on the in vivo cellular reactions and fate of injected bacteria in Galleria mellonella and Pieris brassicae larvae. J. Invert. Pathol. 28, 1724.
  • [19]
    Price, C.D., Ratcliffe, N.A. (1974) A reappraisal of insect haemocyte classification by the examination of blood from fifteen insect orders. Z. Zellforsch. Mikrosk. Anat. 147, 537549.
  • [20]
    Brehelin, M. (1986) Immunity in Invertebrates: Cells, Molecules and Defence Reactions, pp. 233–245. Springer, Heidelberg
  • [21]
    Tojo, S., Naganuma, F., Arakawa, K., Yokoo, S. (2000) Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J. Insect Physiol. 46, 11291135.
  • [22]
    Walters, J.B., Ratcliffe, N.A. (1983) Studies on the in vivo cellular reactions of insects: fate of pathogenic and non-pathogenic bacteria in Galleria mellonella nodules. J. Insect Physiol. 29, 417424.
  • [23]
    Meister, M., Georgel, P., Lemaitre, B., Kappler, C., Lagueux, M., Reichhart, J.M. and Hoffmann, J.A. (1994) Immune gene expression. In: Phylogenetic Perspectives in Immunity: The Insect Host Defence (Hoffmann, J.A., Janeway, C.A., Jr., and Natori, S.R.G., Eds.), pp. 167–181. Landes Company, Austin
  • [24]
    Samakovlis, C., Kimbrell, D.A., Kylsten, P., Engstrom, A., Hultmark, D. (1990) The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J. 9, 29692976.
  • [25]
    Ratcliffe, N.A. (1993) Cellular defence responses in insects: unresolved problems. In: Parasites and Pathogens of Insects, Vol. 1 (Bechage, N.E., Thompson, S.N. and Federici, B.A., Eds.), pp. 579–604. Academic Press, San Diego
  • [26]
    Nappi, A.J., Vass, E. (1998) Hydrogen peroxide production in immune-reactive Drosophila melanogaster. J. Parasitol. 84, 11501157.
  • [27]
    Ezekowitz, R.A.B. (1989) Macrophages – biological aspects. In: Natural Immunity (Nelson, D.S., Ed.), pp. 15–38. Academic Press, Australia
  • [28]
    Henderson, L.M., Chappell, J.B. (1996) NADPH oxidase of neutrophils. Biochim. Biophys. Acta 1273, 87107.
  • [29]
    Baggiolini, M., Wymann, M.P. (1990) Turning on the respiratory burst. Trends Biochem. Sci. 15, 6972.
  • [30]
    Franc, N.C., Dimarcy, J.L., Lagueux, M., Hoffmann, J.A., Ezekowitz, R.A.B. (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4, 431443.
  • [31]
    Franc, N.C., Heitzler, P., Ezekowitz, R.A., White, K. (1999) Requirement for Croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284, 19911994.
  • [32]
    Tepass, U., Fessler, L.I., Aziz, A., Hartenstein, V. (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120, 8291837.
  • [33]
    Wilson, R., Ratcliffe, N.A. (2000) Effect of lysozyme on the lectin-mediated phagocytosis of Bacillus cereus by haemocytes of the cockroach, Blaberus discoidalis. J. Insect Phys. 46, 663670.
  • [34]
    Morel, F., Doussiere, J., Vignais, P.V. (1991) The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur. J. Biochem. 201, 523546.
  • [35]
    Klebanoff, S.J. (1980) Oxygen metabolism and the toxic properties of phagocytes. Ann. Intern. Med. 93, 480489.
  • [36]
    Glupov, V.V., Khvoshevskaya, M.F., Lovinskaya, Y.L., Dubovski, I.M., Martemyanov, V.V., Sokolova, J.Y. (2001) Application of the nitroblue tetrazolium reduction method for studies on the production of reactive oxygen species in insect haemocytes. Cytobios 106, 165178.
  • [37]
    Nappi, A.J., Vass, E. (1998) Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res. 6, 117126.
  • [38]
    Slepneva, I.A., Glupov, V.V., Sergeeva, S.V., Khramtsov, V.V. (1999) EPR detection of reactive oxygen species in hemolymph of Galleria mellonella and Dendrolimus superans sibiricus (Lepidoptera) larvae. Biochem. Biophys. Res. Commun. 264, 212215.
  • [39]
    Carreras, A., Parament, G.A., Catz, S.D., Poderoso, J.J., Boveris, A. (1994) Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrie during the respiratory burst of human neutrophils. FEBS Lett. 341, 6568.
  • [40]
    Pryor, W.A., Squadrito, G.L. (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. Lung. Cell. Mol. Physiol. 268, 699722.
  • [41]
    Denicola, A., Freeman, B.A., Trujillo, M., Radi, R. (1996) peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch. Biochem. Biophys. 333, 4958.
  • [42]
    Eiserich, J.P., Cross, C.E., Jones, A.D., Halliwell, B., van der Vliet, A. (1996) Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J. Biol. Chem. 271, 1919919208.
  • [43]
    Hurst, J.K., Lymar, S.V. (1997) Toxicity of peroxynitrite and related reactive nitrogen species toward Escherichia coli. Chem. Res. Toxicol. 10, 802810.
  • [44]
    Vazquez-Torres, A., Jones-Carson, J., Balish, E. (1996) Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect. Immun. 64, 31273133.
  • [45]
    MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., Nathan, C.F. (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94, 52435248.
  • [46]
    Jutter, S., Bernhagen, J., Metz, C.N., Rollinghoff, M., Bucala, R., Gessner, A. (1998) migration inhibitory factor induces killing of Leishmania major by macrophages: dependence on reactive nitrogen intermediates and endogenous TNF-alpha. J. Immunol. 161, 23832390.
  • [47]
    Foley, E., O'Farrell, P.H. (2003) Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev. 17, 115125.
  • [48]
    Dunn, P.E. (1986) Biochemical aspects of insect immunology. Ann. Rev. Entamol. 31, 321339.
  • [49]
    Choi, J.Y., Whitten, M.M.A., Cho, M.Y., Lee, K.Y., Kim, M.S., Ratcliffe, N.A., Lee, B.L. (2002) Calreticulin enriched as an early stage encapsulation protein in wax moth Galleria mellonella larvae. Dev. Comp. Immunol. 26, 335343.
  • [50]
    Cho, J.H., Homma, K., Kanegasaki, S., Natori, S. (1999) Activation of human neutrophils by a synthetic anti-microbial peptide, KLKLLLLLKLK-NH2 via cell surface calreticulin. Eur. J. Biochem. 266, 878885.
  • [51]
    Lavine, M.D., Strand, M.R. (2001) Surface characteristics of foreign targets that elicit an encapsulation response by the moth Pseudoplusia includens. J. Insect Phys. 47, 965974.
  • [52]
    Dunphy, G., Morton, D., Kropinski, A., Chadwick, J. (1986) Pathogenicity of lipopolysaccharide mutants of Pseudomonas aeruginosa for larvae of Galleria mellonella: bacterial properties associated with virulence. J. Invert. Pathol. 47, 4855.
  • [53]
    da Silva, C.C., Dunphy, G.B., Rau, M.E. (2000) Interaction of Xenorhabdus nematophilus (Enterobacteriaceae) with anti-microbial defenses of the house cricket, Acheta domesticus. J. Invert. Pathol. 76, 285292.
  • [54]
    Sritunyalucksana, K., Soderhal, K. (2000) The proPO and clotting system in crustaceans. Aquaculture 191, 5359.
  • [55]
    Gorman, M., Paskewitz, S. (2001) Serine proteases as mediators of mosquito immune responses. Insect Biochem. Mol. Biol. 31, 257262.
  • [56]
    Soderhall, K., Cerenius, L. (1998) Role of phenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 2328.
  • [57]
    Imler, J.-L., Hoffmann, J.A. (2000) Signalling mechanism in the antimicrobial host defence of Drosophila. Curr. Opin. Microbiol. 3, 1622.
  • [58]
    Medzhitov, R., Preston-Hulburt, P. C.A. Janeway Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394397.
  • [59]
    Heine, H., Lein, E. (2003) Toll-like receptors and their function in innate and adaptive immunity. Int. Arch. Allergy. Immunol. 130 (3), 180192.
  • [60]
    Rushlow, C.A., Arora, K. (1990) Dorsal–ventral polarity and pattern formation in Drosophila. Semin. Cell Biol. 1, 173184.
  • [61]
    O'Neill, L.A., Greene, C. J. Leukoc. Biol. 63, 1998. 650–657
  • [62]
    Seitz, V., Clermont, A., Wedde, M., Hummel, M., Vilcinskas, A., Schlatterer, K., Podsiadlowski, L. (2003) Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a substractive hybridization approach. Dev. Comp. Immunol. 27, 207215.
  • [63]
    Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.-M., Hoffman, J.A. (1996) The dorsoventral regulatory gene cassette spaezle/toll/cactus controls the potent antifungal response in Drosophila adults. Cell 88, 973983.
  • [64]
    Williams, M.J., Rodriguez, A., Kimbrell, D.A., Eldon, E.D. (1997) The 18 wheeler mutation reveals complex anti bacterial gene regulation in Drosophila host defence. EMBO J. 16, 61206130.
  • [65]
    Lowenberger, C. (2001) Innate response of Aedes aegyptii. Insect Biochem. Mol. Biol. 31, 219229.
  • [66]
    Borregarrd, N., Sehested, M., Nielsen, B.S., Sengelov, H., Kjeldsen, L. (1995) Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood 85, 812817.
  • [67]
    Borregaard, N. (1996) Current concepts about neutrophil granule physiology. Curr. Opin. Hematol. 3, 1118.
  • [68]
    Elsbach, P. (1997) Determinants of the antimicrobial action of 14-kDa phospholipases A2. In: Phospholipase A2. Basic and Clinical Aspects in Inflammatory Diseases, (Uhl, W., Nevalainen, T.J. and Buchler, M.W., Eds.), Vol. 24, pp. 17–22. Karger, Basel
  • [69]
    Luchi, M., Munford, R.S. (1993) Binding, internalization, and deacylation of bacterial lipopolysaccharide by human neutrophils. J. Immunol. 151, 959969.
  • [70]
    Keppi, E., Zachary, D., Robertson, M., Hoffmann, D., Hoffmann, J.A. (1986) Induced anti-bacterial proteins in the haemolymph of Phormia terranovae (Diptera). Insect Biochem. 16, 395402.
  • [71]
    Suzuki, Y., Rode, L.J. (1969) Effect of lysozyme on resting spores of Bacillus megaterium. J. Bacteriol. 98, 238245.
  • [72]
    Thorne, K.J., Oliver, R.C., Barrett, A.J. (1976) Lysis and killing of bacteria by lysosomal proteinases. Infect. Immun. 14, 555563.
  • [73]
    Maeda, H. (1980) A new lysozyme assay based on fluorescence polarization and fluorescence intensity utilising a fluorescent peptidoglycan substrate. J. Biochem. 88, 11851191.
  • [74]
    Powning, R.F., Davidson, W.J. (1973) Studies on insect bacteriolytic enzymes – 1. Lysozyme in haemolymph of Galleria mellonella and Bombyx mori. Comp. Biochem. Physiol. B 45, 669686.
  • [75]
    Koizumi, N., Imai, Y., Morozumi, A., Imamura, M., Kadotani, T., Yaoi, K., Iwahana, H., Sato, R. (1999) Lipopolysaccharide-binding protein of Bombyx mori participates in a haemocyte mediated defense reaction against gram-negative bacteria. J. Insect Physiol. 45, 853859.
  • [76]
    Arnold, R.R., Brewer, M., Gauthier, J.J. (1980) Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect. Immun. 28, 893898.
  • [77]
    Bullen, J.J. (1981) The significance of iron in infection. Rev. Infect. Dis. 3, 11271138.
  • [78]
    Nibbering, P., Welling, M.M., Van Berkel, L.A., Van Berkel, P.H.C., Pauwels, E.K.J., Nuijens, J.H. (2001) Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. 69, 14691476.
  • [79]
    Ganz, T., Lehrer, R.I. (1997) Antimicrobial peptides of leukocytes. Curr. Opin. Hematol. 4, 5358.
  • [80]
    Raj, P.A., Dentino, A.R. (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol. Lett. 206, 918.
  • [81]
    Broekaert, W.F., Terras, F.R., Cammue, B.P., Osborn, R.W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defence system. Plant Physiol. 108, 13531358.
  • [82]
    Hoffman, J.A., Reichhart, J.M. (1997) Drosophila immunity. Trends Cell Biol. 7, 309316.
  • [83]
    Ganz, T., Lehrer, R.I. (1995) Defensins. Pharmacol. Ther. 66, 191205.
  • [84]
    Ganz, T., Selsted, M.E., Szklarek, D., Harwig, S.S., Daher, K., Bainton, D.P., Lehrer, R.I. (1985) Defensins. Natural peptide antiobiotics of human neutrophils. J. Clin. Invest. 76, 14271435.
  • [85]
    Lehrer, R.I., Barton, A., Daher, K.A., Harwig, S.S., Ganz, T., Selsted, M.E. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84, 553561.
  • [86]
    Lehrer, R.I., Lichtenstein, A.K., Ganz, T. (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105128.
  • [87]
    Dunphy, G., Webster, J. (1984) Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30, 883889.
  • [88]
    Balls, M. (1999) Science without guinea pigs. RTD Inform. 24, 2628.
  • [89]
    Paterson, R.P., Simmonds, M.S., Blaney, W.M. (1987) Mycopesticidal effects of characterised extracts of Penicillium isolates and purified secondary metabolites on Drosophila melanogaster and Spodoptera littoralis. J. Invert. Pathol. 50, 124133.
  • [90]
    Romani, L. (1999) Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr. Opin. Microbiol. 2, 363367.
  • [91]
    Jander, G., Rahme, L., Ausbel, F. (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182, 38433845.
  • [92]
    Salamitou, S., Ramisse, F., Brehelin, M., Bourguet, D., Gilois, N., Gominet, M., Hernandez, E., Lereclus, D. (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146, 28252832.
  • [93]
    Hendrickson, E., Plotnikova, J., Mahajan-Miklos, S., Rahme, L., Ausbel, F. (2001) Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects and mice. J. Bacteriol. 183, 71267134.
  • [94]
    Cotter, G., Doyle, S., Kavanagh, K. (2000) Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol. Med. Microbiol. 27, 163169.
  • [95]
    Brennan, M., Thomas, D.Y., Whiteway, M., Kavanagh, K. (2002) Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol. Med. Microbiol. 34, 153157.