SEARCH

SEARCH BY CITATION

References

  • [1]
    Armitage, J.P. (1999) Bacterial tactic responses. Adv. Microb. Physiol. 41, 229289.
  • [2]
    Fenchel, T. (2002) Microbial behavior in a heterogeneous world. Science 296, 10681071.
  • [3]
    Segall, J.E., Manson, M.D., Berg, H.C. (1982) Signal processing times in bacterial chemotaxis. Nature 296, 855857.
  • [4]
    Taylor, B.L., Zhulin, I.B. (1998) In search of higher energy: metabolism-dependent behaviour in bacteria. Mol. Microbiol. 28, 683690.
  • [5]
    Taylor, B.L., Zhulin, I.B., Johnson, M.S. (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu. Rev. Microbiol. 53, 103128.
  • [6]
    Alexandre, G., Zhulin, I.B. (2001) More than one way to sense chemicals. J. Bacteriol. 181, 46814686.
  • [7]
    Falke, J.J., Hazelbauer, G.L. (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem. Sci. 26, 257265.
  • [8]
    Phillips, D.A., Streit, W. (1995) Legume signals to rhizobial symbionts: a new approach for defining rhizosphere colonization. In: Plant–Microbe Interactions (Stacey, G., Keen, N.T., Eds.), pp.236–271 Chapman & Hall, New York, NY.
  • [9]
    Lugtenberg, B.J.J., Kravchenko, L.V., Simons, M. (1999) Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1, 439446.
  • [10]
    Flessa, H., Fisher, W.R. (1992) Plant-induced changes in the redox potentials of rice rhizosphere. Plant Soil 143, 5560.
  • [11]
    Højberg, O., Sørensen, J. (1993) Microgradients of microbial oxygen consumption in a barley rhizosphere model system. Appl. Environ. Microbiol. 59, 431437.
  • [12]
    Alexandre, G., Jacoud, C., Faure, D., Bally, R. (1996) Population dynamics of a motile and a non-motile Azospirillum lipoferum strain during rice colonization and motility variation in the rhizosphere. FEMS Microbiol. Ecol. 19, 271278.
  • [13]
    Ames, P., Schluederberg, S.A., Bergman, K. (1980) Behavioral mutants of Rhizobium meliloti. J. Bacteriol. 141, 722727.
  • [14]
    Armitage, J.P., Gallagher, A., Johnston, A.W.B. (1988) Comparison of the chemotactic behaviour of Rhizobium leguminosarum with and without the nodulation plasmid. Mol. Microbiol. 2, 743748.
  • [15]
    Caetano-Anolles, G., Wrobel-Boerner, E., Bauer, W.D. (1992) Growth and movement of spot inoculated Rhizobium meliloti on the root surface of alfalfa. Plant Physiol. 98, 11811189.
  • [16]
    De Weert, S., Vermeiren, H., Mulders, I.H., Kuiper, I., Hendrickx, N., Bloemberg, G.V., Vanderleyden, J., De Mot, R., Lugtenberg, B.J. (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant–Microbe Interact. 15, 11731180.
  • [17]
    Dharmatilake, A.J., Bauer, W.D. (1992) Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58, 11531158.
  • [18]
    Parke, D., Ornston, L.N., Nester, E.W. (1987) Chemotaxis to plant phenolic inducers of virulent genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. J. Bacteriol. 169, 53365338.
  • [19]
    Shaw, C.H., Ashby, A.M., Brown, A., Royal, C., Loake, G.J. (1988) virA and virG are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens towards acetosyringone. Mol. Microbiol. 2, 413417.
  • [20]
    Zhulin, I.B., Armitage, J.P. (1992) The role of taxis in the ecology of Azospirillum. Symbiosis 13, 199206.
  • [21]
    Bashan, Y., Holguin, G. (1994) Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 60, 21202131.
  • [22]
    Singh, T., Srivastava, A.K., Arora, D.K. (2002) Horizontal and vertical movement of Pseudomonas fluorescens toward exudate of Macrophomina phaseolina in soil: influence of motility and soil properties. Microbiol. Res. 157, 139148.
  • [23]
    Turnbull, G.A., Morgan, J.A., Whipps, J.M., Saunders, J.R. (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol. Ecol. 36, 2131.
  • [24]
    Armitage, J.P. (1997) Behavioral responses of bacteria to light and oxygen. Arch. Microbiol. 168, 249261.
  • [25]
    Willey, J.M., Waterbury, J.B. (1989) Chemotaxis toward nitrogenous compounds by swimming strains of marine Synechococcus spp. Appl. Environ. Microbiol. 55, 18881894.
  • [26]
    Blackburn, N., Fenchel, T., Mitchell, J. (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 22542256.
  • [27]
    Fenchel, T. (2001) Eppur si muove: many water column bacteria are motile. Aquat. Microb. Ecol. 24, 197201.
  • [28]
    Grossart, H.P., Riemann, L., Azam, F. (2001) Bacterial motility in the sea and its ecological implications. Aquat. Microb. Ecol. 25, 247258.
  • [29]
    Cohen, Y. and Rosenberg, E. (1989). Microbial mats. Physiological Ecology of Benthic Microbial Communities. American Society of Microbiology, Washington, D.C
  • [30]
    Mir, J., Martinez-Alonso, M., Esteve, I., Guerero, R. (1991) Vertical stratification and microbial assemblage of a microbial mats in Ebro Delta (Spain). FEMS Microbiol. Ecol. 86, 5968.
  • [31]
    De Wit, R., Jonkers, H.M., Vand den Ende, F.P., Van Gemerden, H. (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth. J. Sea Res. 23, 271281.
  • [32]
    Van Gemerden, H. (1993) Microbial mats: a joint venture. Mar. Geol. 113, 325.
  • [33]
    Garcia-Pichel, F., Mechling, M., Castenholz, R.W. (1994) Diel migrations of microorganisms within a bethic, hypersaline mat community. Appl. Environ. Microbiol. 60, 15001511.
  • [34]
    Krekeler, D., Teske, A., Cypionka, H. (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol. Ecol. 25, 8996.
  • [35]
    Møller, M.M., Nielsen, L.P., Jørgensen, B.B. (1985) Oxygen responses and mat formation by Beggiatoa sp. Appl. Environ. Microbiol. 50, 373382.
  • [36]
    Berg, H.C., Brown, D.A. (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500504.
  • [37]
    Segall, J.E., Block, S.M., Berg, H.C. (1986) Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 83, 89878991.
  • [38]
    Brown, D.A., Berg, H.C. (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 13881392.
  • [39]
    Blair, D.F. (1995) How bacteria sense and swim. Annu. Rev. Microbiol. 49, 489522.
  • [40]
    Bren, A., Eisenbach, M. (2000) How signals are heard during bacterial chemotaxis: protein–protein interactions in sensory signal propagation. J. Bacteriol. 182, 68656873.
  • [41]
    Bourret, R.B., Stock, A.M. (2002) Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 277, 96259628.
  • [42]
    Falke, J.J., Bass, R.B., Butler, S.L., Chervitz, S.A., Danielson, M.A. (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457512.
  • [43]
    le Moual, H. D.E. Koshland Jr. (1996) Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J. Mol. Biol. 261, 568585.
  • [44]
    Maddock, J.R., Shapiro, L. Science. 259, 1993. 1717–1723
  • [45]
    Bray, D., Levin, M.D., Morton-Firth, C.J. Nature. 393, 1998. 85–88
  • [46]
    Alexandre, G., Zhulin, I.B. (2003) Different evolutionary constraints on chemotaxis proteins CheW and CheY revealed by heterologous expression studies and protein sequence analysis. J. Bacteriol. 185, 544552.
  • [47]
    Alley, M.R., Gomes, S.L., Alexander, W., Shapiro, L. (1991) Genetic analysis of a temporally transcribed chemotaxis gene cluster in Caulobacter crescentus. Genetics 129, 333341.
  • [48]
    Charon, N.W., Goldstein, S.F. (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the Spirochetes. Annu. Rev. Genet. 36, 4773.
  • [49]
    Ditty, J.L., Grimm, A.C., Harwood, C.S. (1998) Identification of a chemotaxis gene region from Pseudomonas putida. FEMS Microbiol. Lett. 159, 267273.
  • [50]
    Greck, M., Platzer, J., Sourjik, V., Schmitt, R. (1995) Analysis of a chemotaxis operon in Rhizobium meliloti. Mol. Microbiol. 15, 9891000.
  • [51]
    Hauwaerts, D., Alexandre, G., Das, S.K., Vanderleyden, J., Zhulin, I.B. (2002) A major chemotaxis gene cluster in Azospirillum brasilense and relationships between chemotaxis operons in alpha-proteobacteria. FEMS Microbiol. Lett. 208, 6167.
  • [52]
    Jiang, Z.Y., Gest, H., Bauer, C.E. (1997) Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components. J. Bacteriol. 179, 57205727.
  • [53]
    Kirsch, M.L., Carpenter, P.B., Ordal, G.W. (1994) A putative ATP-binding protein from the che/fla locus of Bacillus subtilis. DNA Seq. 4, 271275.
  • [54]
    Rudolph, J., Osterhelt, D. (1996) Deletion analysis of the che operon in the archaeon Halobacterium salinarum. J. Mol. Biol. 258, 548554.
  • [55]
    Ward, M.J., Bell, A.W., Hamblin, P.A., Paker, H.L., Armitage, J.P. (1995) Identification of a chemotaxis operon with two cheY genes in Rhodobacter sphaeroides. Mol. Microbiol. 17, 357366.
  • [56]
    Wright, E.L., Deakin, N.J., Shaw, C.H. (1998) A chemotaxis gene cluster from Agrobacterium tumefaciens. Gene 220, 8389.
  • [57]
    Zhulin, I.B. (2001) The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv. Microb. Physiol. 45, 157198.
  • [58]
    Ferrandez, A., Hawkins, A.C., Summerfield, D.T., Harwood, C.S. (2002) Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response. J. Bacteriol. 184, 43744383.
  • [59]
    Porter, S.L., Warren, A.V., Martin, A.C., Armitage, J.P. (2002) The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol. Microbiol. 46, 10811094.
  • [60]
    Armitage, J.P., Schmitt, R. (1997) Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti– variations on a theme. Microbiology 143, 36713682.
  • [61]
    Harrison, D.M., Skidmore, J., Armitage, J.P., Maddock, J.R. (1999) Localization and environmental regulation of MCP-like proteins in Rhodobacter sphaeroides. Mol. Microbiol. 31, 885892.
  • [62]
    Shah, D.S., Porter, S.L., Martin, A.C., Hamblin, P.A., Armitage, J.P. (2000) Fine tuning bacterial chemotaxis: analysis of Rhodobacter sphaeroides behaviour under aerobic and anaerobic conditions by mutation of the major chemotaxis operons and cheY genes. EMBO J. 19, 46014613.
  • [63]
    Adler, J. (1988) Chemotaxis: old and new. Bot. Acta 101, 93100.
  • [64]
    Armitage, J.P., Ingham, C., Evans, M.C. (1985) Role of proton motive force in phototactic and aerotactic responses of Rhodopseudomonas sphaeroides. J. Bacteriol. 161, 967972.
  • [65]
    Bespalov, V.A., Zhulin, I.B., Taylor, B.L. (1996) Behavioral responses of Escherichia coli to changes in redox potential. Proc. Natl. Acad. Sci. USA 93, 1008410089.
  • [66]
    Grishanin, R.N., Chalmina, I.I., Zhulin, I.B. (1991) Behavior of Azospirillum brasilense in a spatial gradient of oxygen and in a redox gradient of an artificial electron-acceptor. J. Gen. Microbiol. 137, 27812785.
  • [67]
    Murvanidze, G.V., Glagolev, A.N. (1982) Electrical nature of the taxis signal in cyanobacteria. J. Bacteriol. 150, 239244.
  • [68]
    Shioi, J., Taylor, B.L. (1984) Oxygen taxis and proton motive force in Salmonella typhimurium. J. Biol. Chem. 259, 1098310988.
  • [69]
    Taylor, B.L., Miller, J.B., Warrick, H.M. D.E. Koshland Jr. (1979) Electron acceptor taxis and blue light effect on bacterial chemotaxis. J. Bacteriol. 140, 567573.
  • [70]
    Zhulin, I.B., Bespalov, V.A., Johnson, M.S., Taylor, B.L. (1996) Oxygen taxis and proton motive force in Azospirillum brasilense. J. Bacteriol. 178, 51995204.
  • [71]
    Zhulin, I.B., Rowsell, E.H., Johnson, M.S., Taylor, B.L. (1997) Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 179, 31973201.
  • [72]
    Bibikov, S.I., Biran, R., Rudd, K.E., Parkinson, J.S. (1997) A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol. 179, 40754079.
  • [73]
    Rebbapragada, A., Johnson, M.S., Harding, G.P., Zuccarelli, A.J., Fletcher, H.M., Zhulin, I.B., Taylor, B.L. (1997) The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc. Natl. Acad. Sci. USA 94, 1054110546.
  • [74]
    Bibikov, S.I., Barns, L.A., Gitin, Y., Parkinson, J.S. (2000) Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 58305835.
  • [75]
    Repik, A., Rebbapragada, A., Johnson, M.S., Haznedar, J.O., Zhulin, I.B., Taylor, B.L. (2000) PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol. Microbiol. 36, 806816.
  • [76]
    Taylor, B.L., Zhulin, I.B. (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479506.
  • [77]
    Greer-Philips, S.E., Alexandre, G., Taylor, B.L., Zhulin, I.B. (2003) Aer and Tsr guide Escherichia coli in spatial gradients of oxidizable substrates. Microbiology 149, 26612667.
  • [78]
    Genick, U.K., Soltis, S.M., Kuhn, P., Canestrelli, I.L., Getzoff, E.D. (1998) Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature 392, 206209.
  • [79]
    Gong, W., Hao, B., Mansy, S.S., Gonzalez, G., Gilles-Gonzalez, M.A., Chan, M.K. (1998) Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc. Natl. Acad. Sci. USA 95, 1517715182.
  • [80]
    Repaske, D.R., Adler, J. (1981) Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J. Bacteriol. 145, 11961208.
  • [81]
    Kihara, M., Macnab, R.M. (1981) Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria. J. Bacteriol. 145, 12091221.
  • [82]
    Levit, M.N., Stock, J.B. (1999) pH sensing in bacterial chemotaxis. Novartis Found. Symp. 221, 3850.
  • [83]
    Fu, R., Wall, J.D., Voordouw, G. (1994) DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J. Bacteriol. 176, 344350.
  • [84]
    Jiang, Z.Y., Bauer, C.E. (2001) Component of the Rhodospirillum centenum photosensory apparatus with structural and functional similarity to methyl-accepting chemotaxis protein chemoreceptors. J. Bacteriol. 183, 171177.
  • [85]
    Alexandre, G., Greer, S.E., Zhulin, I.B. (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J. Bacteriol. 182, 60426048.
  • [86]
    Clancy, M., Madill, K.A., Wood, J.M. (1981) Genetic and biochemical requirements for chemotaxis to l-proline in Escherichia coli. J. Bacteriol. 146, 902906.
  • [87]
    Jeziore-Sassoon, Y., Hamblin, P.A., Bootle-Wilbraham, C.A., Poole, P.S., Armitage, J.P. (1998) Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides. Microbiology 144, 229239.
  • [88]
    Scharf, B., Schmitt, R. (2002) Sensory transduction to the flagellar motor of Sinorhizobium meliloti. J. Mol. Microbiol. Biotechnol. 4, 183186.
  • [89]
    Grimm, A.C., Harwood, C.S. (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol. 181, 33103316.
  • [90]
    Nichols, N.N., Harwood, C.S. (2000) An aerotaxis transducer gene from Pseudomonas putida. FEMS Microbiol. Lett. 182, 177183.
  • [91]
    Hendrixson, D.R., Akerley, B.J., DiRita, V.J. (2001) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol. Microbiol. 40, 214224.
  • [92]
    Alexandre, G., Bally, R., Taylor, B.L., Zhulin, I.B. (1999) Loss of cytochrome c oxidase activity and acquisition of resistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum. J. Bacteriol. 181, 67306738.
  • [93]
    Steendhout, O., Vanderleyden, J. (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetics, biochemical and ecological aspects. FEMS Microbiol. Rev. 24, 487506.
  • [94]
    Gauden, D.E., Armitage, J.P. (1995) Electron-transport-dependent taxis in Rhodobacter sphaeroides. J. Bacteriol. 177, 58535859.
  • [95]
    Grishanin, R.N., Gauden, D.E., Armitage, J.P. (1997) Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport. J. Bacteriol. 179, 2430.
  • [96]
    Lee, D.Y., Ramos, A., Macomber, L., Shapleigh, J.P. (2002) Taxis response of various denitrifying bacteria to nitrate and nitrite. Appl. Environ. Microbiol. 68, 21402147.
  • [97]
    Zhulin, I.B., Lois, A.F., Taylor, B.L. (1995) Behavior of Rhizobium meliloti in oxygen gradients. FEBS Lett. 367, 180182.
  • [98]
    Platzer, J., Sterr, W., Hausmann, M., Schmitt, R. (1997) Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti. J. Bacteriol. 179, 63916399.
  • [99]
    Blakemore, R.P., Frankel, R.B., Kalmijn, A.J. (1980) South-seeking bacteria in the southern hemisphere. Nature 286, 384385.
  • [100]
    Schuler, D., Spring, S., Bazylinski, D.A. (1999) Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. Syst. Appl. Microbiol. 22, 466471.
  • [101]
    Frankel, R.B., Bazylinski, D.A., Johnson, M.S., Taylor, B.L. (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys. J. 73, 9941000.
  • [102]
    Johnson, M.S., Zhulin, I.B., Gapuzan, M.E., Taylor, B.L. (1997) Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 179, 10015598.
  • [103]
    Eschemann, A., Kuhl, M., Cypionka, H. (1999) Aerotaxis in Desulfovibrio. Environ. Microbiol. 1, 489494.
  • [104]
    Hou, S., Larsen, R.W., Boudko, D., Riley, C.W., Karatan, E., Zimmer, M., Ordal, G.W., Alam, M. (2000) Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403, 540544.
  • [105]
    Xiong, J. D.M. Kurtz Jr. Ai, J., Sanders-Loehr, J. (2000) A hemerythrin-like domain in a bacterial chemotaxis protein. Biochemistry 39, 51175125.
  • [106]
    Zhulin, I.B. (2000) A novel phototaxis receptor hidden in the cyanobacterial genome. J. Mol. Microbiol. Biotechnol. 2, 491493.
  • [107]
    Bhaya, D., Takahashi, A., Grossman, A.R. (2001) Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc. Natl. Acad. Sci. USA 98, 75407545.
  • [108]
    Shu, C.J., Ulrich, L.E., Zhulin, I.B. (2003) The NIT domain: a nitrate responsive module in bacterial sensory receptors. Trends Biochem. Sci. 28, 121124.
  • [109]
    Kirby, J.R., Zusman, D.R. (2003) Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100, 20082013.
  • [110]
    Wuichet, K., Zhulin, I.B. (2003) Molecular evolution of sensory domains in cyanobacterial chemoreceptors. Trends Microbiol. 11, 200203.
  • [111]
    Zhulin, I.B., Taylor, B.L., Dixon, R. (1997) PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci. 22, 331333.
  • [112]
    Aravind, L., Ponting, C.P. (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22, 458459.
  • [113]
    Anantharaman, V., Aravind, L. (2000) Cache – a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 25, 535537.
  • [114]
    Anantharaman, V., Aravind, L. (2002) The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends Biochem. Sci. 26, 579582.
  • [115]
    Mougel, C., Zhulin, I.B. (2002) CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends Biochem Sci. 26, 582584.
  • [116]
    Iyer, L.M., Anantharaman, V., Aravind, L. Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics. 4, 2003. 5
  • [117]
    Zhulin, I.B., Nikolskaya, A.N., Galperin, M.Y. (2003) Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in Bacteria and Archaea. J. Bacteriol. 185, 285294.
  • [118]
    Georgellis, D., Kwon, O., Lin, E.C.C. (2001) Quinones as the redox signal for the arc two-component system of bacteria. Science 292, 23142316.
  • [119]
    Gomelsky, M., Klug, G. (2002) BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci. 27, 497500.
  • [120]
    Anantharaman, V., Koonin, E.V., Aravind, L. (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J. Mol. Biol. 307, 12711292.
  • [121]
    Dioum, E.M., Rutter, J., Tuckerman, J.R., Gonzalez, G., Gilles-Gonzalez, M.A., McKnight, S.L. (2002) NPAS2: a gas-responsive transcription factor. Science 298, 23852387.
  • [122]
    Schultz, J., Milpetz, F., Bork, P., Ponting, C.P. (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 58575864.
  • [123]
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.