• [1]
    Kaneko, T, Nakamura, Y, Wolk, C.P, Kuritz, T, Sasamoto, S, Watanabe, A, Iriguchi, M, Ishikawa, A, Kawashima, K, Kimura, T, Kishida, Y, Kohara, M, Matsumoto, M, Matsuno, A, Muraki, A, Nakazaki, N, Shimpo, S, Sugimoto, M, Takazawa, M, Yamada, M, Yasuda, M, Tabata, S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8, 205213.
  • [2]
    Meeks, J.C, Elhai, J, Thiel, T, Potts, M, Larimer, F, Lamerdin, J, Predki, P, Atlas, R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynthesis Res. 70, 85106.
  • [3]
    Wang, L, Sun, Y.-P, Chen, W.-L, Li, J.-H, Zhang, C.-C (2002) Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120. FEMS Microbiol. Lett. 217, 155165.
  • [4]
    Arcondeguy, T, Jack, R, Merrick, M (2001) PII signal transduction proteins: pivotal players in microbial nitrogen control. Microbiol. Mol. Biol. Rev. 65, 80105.
  • [5]
    Ninfa, A.J, Atkinson, M.R (2000) PII signal transduction proteins. Trends Microbiol. 8, 172179.
  • [6]
    Shapiro, B.M (1969) The glutamine synthetase deadenylylating enzyme system from Escherichia coli: resolution into two components, specific nucleotide stimulation and cofactor requirements. Biochemistry 8, 659670.
  • [7]
    Stadtman, E.R (1990) Discovery of glutamine synthetase cascade. Methods Enzymol. 182, 793809.
  • [8]
    Stadtman, E.R (2001) The story of glutamine synthetase regulation. J. Biol. Chem. 276, 4435744364.
  • [9]
    Xu, Y, Chea, E, Carr, P.D, Van Heeswijk, W.C, Westerhoff, H, Vasudevan, S.G, Ollis, D.L (1998) GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loop may be involved in molecular recognition. J. Mol. Biol. 282, 149165.
  • [10]
    Xu, Y, Carr, P.D, Huber, T, Vasudevan, S.G, Ollis, D.L (2001) The structure of the PII-ATP complex. Eur. J. Biochem. 268, 20282037.
  • [11]
    Kamberov, E.S, Atkinson, M.A, Ninfa, A.J (1995) The Escherichia coli signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J. Biol. Chem. 270, 1779717807.
  • [12]
    Jiang, P, Peliska, J.A, Ninfa, A.J (1998) Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC of Escherichia coli and its interaction with the PII protein. Biochemistry 37, 1278212794.
  • [13]
    Benelli, E.M, Buck, M, Polikarpov, I, De Souza, E.M, Cruz, L.M, Pedrosa, F.O (2002) Herbaspirillum seropedicae signal transducer protein PII is structurally similar to the enteric GlnK. Eur. J. Biochem. 269, 32963303.
  • [14]
    Son, H.S, Rhee, S.G (1987) Cascade control of Escherichia coli glutamine synthetase: purification and properties of PII protein and nucleotide sequence of its structural gene. J. Biol. Chem. 262, 86908695.
  • [15]
    Atkinson, M, Ninfa, A (1999) Characterization of the GlnK protein of Escherichia coli. Mol. Microbiol. 32, 301313.
  • [16]
    Jaggi, R, Ybarlucea, W, Chea, E, Carr, P.D, Edwards, K.J, Ollis, D.L, Vasudevan, S.G (1996) The role of the T-loop of the signal transduction protein PII from Escherichia coli. FEBS Lett. 391, 223228.
  • [17]
    Adler, S.P, Purich, D, Stadtman, E.R (1975) Cascade control of Escherichia coli glutamine synthetase: properties of the PII regulatory protein and the uridylyltransferase-uridylylremoving enzyme. J. Biol. Chem. 250, 62646272.
  • [18]
    Liu, J, Magasanik, B (1993) The glnB region of the Escherichia coli chromosome. J. Bacteriol. 175, 74417449.
  • [19]
    Atkinson, M.A, Blauwkamp, T.A, Bondarenko, V, Studistky, V, Ninfa, A.J (2002) Activation of the glnA, glnK and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. J. Bacteriol. 184, 53585363.
  • [20]
    Maheswaran, M, Forchhammer, K (2003) Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signalling. Microbiology 149, 21632172.
  • [21]
    Ninfa, A.J, Magasanik, B (1986) Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83, 59095913.
  • [22]
    Jiang, P, Peliska, J.A, Ninfa, A (1998) Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. Biochemistry 37, 1279512801.
  • [23]
    Jiang, P, Ninfa, A.J (1999) Regulation of the autophosphorylation of Escherichia coli nitrogen regulatorII by the PII signal transduction protein. J. Bacteriol. 181, 19061911.
  • [24]
    Bueno, R, Pahel, G, Magasanik, B (1985) Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli. J. Bacteriol. 164, 816822.
  • [25]
    Rhee, S.G, Chock, P.B, Stadtman, E.R (1985) Glutamine synthetase from Escherichia coli. Methods Enzymol. 113, 213241.
  • [26]
    Jiang, P, Peliska, J.A, Ninfa, A (1998) The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37, 1280212810.
  • [27]
    Jaggi, R, Van Heeswijk, W.C, Westerhoff, H.V, Ollis, D.L, Vasudevan, S.G (1997) The two opposing activities of adenylyltransferase reside in distinct homologous domains, with intramolecular signal transduction. EMBO J. 16, 55625571.
  • [28]
    Coutts, G, Thomas, G, Blakey, D, Merrick, M (2002) Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J. 21, 536545.
  • [29]
    Blauwkamp, T.A, Ninfa, A.J (2003) Antagonism of PII signalling by the AmtB protein of Escherichia coli. Mol. Microbiol. 48, 10171028.
  • [30]
    Ninfa, A.J, Jiang, P, Atkinson, M.R, Peliska, J.A (2000) Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr. Top. Cell Regul. 36, 3175.
  • [31]
    Hesketh, A, Fink, D, Gust, B, Rexer, H.-U, Scheel, B, Chater, K, Wohlleben, W, Engels, A (2002) The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol. Microbiol. 46, 319330.
  • [32]
    Detsch, C, Stülke, J (2003) Ammonium utilization in Bacillus subtilis: transport and regulatory functions of NrgA and NrgB. Microbiology 149, 32893297.
  • [33]
    Arcondeguy, T, Lawson, D, Merrick, M (2000) Two residues in the T-loop of GlnK determine NifL-dependent nitrogen control of nif-gene expression. J. Biol. Chem. 275, 3845238456.
  • [34]
    Arsene, F, Kaminski, P.A, Elmerich, C (1996) Modulation of NifA activity by PII in Azospirillum brasiliense: evidence for a regulatory role of the NifA N-terminal domain. J. Bacteriol. 178, 48304838.
  • [35]
    Pawlowski, A, Riedel, K-U, Klipp, W, Dreiskemper, P, Groß, S, Bierhoff, H, Drepper, T, Masepohl, B (2003) Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. J. Bacteriol. 185, 52405247.
  • [36]
    Little, R, Colombo, V, Leech, A, Dixon, R (2002) Direct interaction of the NifL regulatory protein with the GlnK signal transducer enables the Azotobacter vinelandii NifL–NifA regulatory system to respond to conditions replete for nitrogen. J. Biol. Chem. 277, 1547215481.
  • [37]
    Hallenbeck, P.C (1992) Mutations affecting nitrogenase switch-off in Rhodobacter capsulatus. Biochem. Biophys. Acta 1118, 161168.
  • [38]
    Inoue, K, Alsina, J, Chen, J, Inouye, M (2003) Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. Mol. Microbiol. 48, 10051016.
  • [39]
    Sanders, C.E, Melis, A, Allen, J.F (1989) In vivo phosphorylation of proteins in the cyanobacterium Synechococcus 6301 after chromatic acclimation to Photosystem I or Photosystem II light. Biochim. Biophys. Acta 976, 168172.
  • [40]
    Harrison, M.A, Keen, J.N, Findlay, J.B, Allen, J.F (1990) Modification of a glnB-like gene product by photosynthetic electron transport in the cyanobacterium Synechococcus 6301. FEBS Lett. 264, 2528.
  • [41]
    Tsinoremas, N.F, Castets, A.M, Harrison, M.A, Allen, J.F, Tandeau de Marsac, N (1991) Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of post-translational modification of the glnB gene product. Proc. Natl. Acad. Sci. USA 88, 45654569.
  • [42]
    Forchhammer, K, Tandeau de Marsac, N (1994) The PII protein in the cyanobacterium Synechococcus sp. strain PCC7942 is modified by serine phosphorylation and signals the cellular N-status. J. Bacteriol. 176, 8491.
  • [43]
    Forchhammer, K, Tandeau de Marsac, N (1995) Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity. J. Bacteriol. 177, 58125817.
  • [44]
    Garcia-Dominguez, M, Florencio, J.F (1997) Nitrogen availability and electron transport control the expression of glnB gene (encoding PII protein) in the cyanobacterium Synechocystis PCC 6803. Plant Mol. Biol. 35, 723734.
  • [45]
    Hanson, T.E, Forchhammer, K, Tandeau de Marsac, N, Meeks, J.C (1998) Characterization of the glnB gene product of Nostoc punctiforme strain ATCC 29133: glnB or the PII protein may be essential. Microbiology 144, 15371547.
  • [46]
    Gonzalez, L, Phalip, V, Zhang, C.-C. Modification of the PII protein in response to nitrogen availability in filamentous heterocystous cyanobacteria Anabaena sp. PCC 7120. Pedrosa, F.O, Hungria, M, Yates, G, Newton, W.A, Eds. Nitrogen Fixation: From Molecules to Crop Productivity. 2000. Kluwer Academic, Dordrecht, NL. 107
  • [47]
    Partensky, F, Hess, W.R, Vaulot, D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106127.
  • [48]
    Dufresne, A, Salanoubat, M, Partensky, F, Artiguenave, F, Axmann, I.M, Barbe, V, Duprat, S, Galperin, M.Y, Koonin, E.V, le Gall, F, Makarova, K.S, Ostrowski, M, Oztas, S, Robert, C, Rogozin, I.B, Scanlan, D.J, Tandeau de Marsac, N, Weissenbach, J, Wincker, P, Wolf, Y.I, Hess, W.R (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl. Acad. Sci. USA 100, 1002010025.
  • [49]
    Palinska, K.A, Laloui, W, Bedu, S, Loiseaux-de Goer, S, Castets, A.M, Rippka, R, Tandeau de Marsac, N (2002) The signal transducer PII and bicarbonate aquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation. Microbiology 148, 24052412.
  • [50]
    Hsieh, M, Lam, H, Van de Loo, F.J, Coruzzi, G (1998) A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc. Natl. Acad. Sci. USA 95, 1396513970.
  • [51]
    Reith, M.E, Munholland, J (1995) Complete sequence of the Porphyra purpurea chloroplast genome. Plant Mol. Biol. Rep. 13, 333335.
  • [52]
    Moorhead, G.B.G, Smith, C.S (2003) Interpreting the plastid carbon, nitrogen, and energy status. A role for PII. Plant Physiol. 133, 17.
  • [53]
    Smith, C, Weljie, A.M, Moorhead, G.B.G (2003) Molecular properties of the putative nitrogen sensor PII from Arabidopsis thaliana. Plant J. 33, 353360.
  • [54]
    Forchhammer, K, Tandeau de Marsac, N (1995) Functional analysis of the phosphoprotein PII from the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 177, 20332040.
  • [55]
    Irmler, A, Sanner, S, Dierks, H, Forchhammer, K (1997) Dephosphorylation of the phosphoprotein PII in Synechococcus PCC 7942: identification of an ATP and 2-oxoglutarate-regulated phosphatase activity. Mol. Microbiol. 26, 8190.
  • [56]
    Hisbergues, M Jeanjean Joset, F, Tandeau de Marsac, N, Bedu, S (1999) Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in Synechocystis PCC 6803. FEBS Lett. 463, 216220.
  • [57]
    Forchhammer, K, Hedler, A (1997) Phosphoprotein PII from cyanobacteria: analysis of functional conservation to the PII signal transduction protein from Escherichia coli. Eur. J. Biochem. 244, 869875.
  • [58]
    Forchhammer, K (1999) The PII protein in Synechococcus PCC 7942 senses and signals 2-oxoglutarate under ATP-replete conditions. In: The Phototrophic Prokaryotes (Peschek, G, Löffelhardt, W, Schmetterer, G, Eds.), pp.549–553 Kluwer Academic, New York, NY.
  • [59]
    Shi, L, Potts, M, Kenelly, M (1998) The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22, 229253.
  • [60]
    Zhang, C.C, Gonzalez, L, Phalip, V (1998) Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome. Nucleic Acids Res. 26, 36193625.
  • [61]
    Irmler, A, Forchhammer, K (2001) A PP2C-type phosphatase dephosphorylates the PII signalling protein in the cyanobacterium Synechocystis PCC 6803. Proc. Natl. Acad. Sci. USA 98, 1297812983.
  • [62]
    Kaneko, T, Sato, S, Kotani, H, Tanaka, A, Asamizu, E, Nakamura, Y, Miyajima, N, Hirosawa, M, Sugiura, M, Sasamoto, S, Kimura, T, Hosouchi, T, Matsuno, A, Muraki, A, Nakazaki, N, Naruo, K, Okumura, S, Shimpo, S, Takeuchi, C, Wada, T, Watanabe, A, Yamada, M, Yasuda, M, Tabata, S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 30, 109136.
  • [63]
    Treuner-Lange, A, Ward, M.J, Zusman, D.R (2001) Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development. Mol. Microbiol. 40, 126140.
  • [64]
    Ruppert, U, Irmler, A, Kloft, N, Forchhammer, K (2002) The novel protein phosphatase PphA from Synechocystis PCC 6803 controls dephosphorylation of the signalling protein PII. Mol. Microbiol. 44, 855864.
  • [65]
    Ruppert, U, Kloft, N, Forchhammer, K (2004) PII signalling in unicellular cyanobacteria: involvement of redox-signals, energy charge and metabolites. Physiol. Plantarm 120, 5156.
  • [66]
    Xu, Y, Carr, P.D, Clancy, P, Garcia-Dominguez, M, Forchhammer, K, Florencio, F, Tandeau de Marsac, N, Vasudevan, S, Ollis, D (2003) The structures of the PII proteins from the cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. Acta Cryst. D 59, 21832190.
  • [67]
    Forchhammer, K, Hedler, A, Strobel, H, Weiss, V (1999) Heterotrimerization of PII-like signaling proteins: implications for PII-mediated signal transduction systems. Mol. Microbiol. 33, 338349.
  • [68]
    Lee, H-M, Flores, E, Herrero, A, Houmard, J, Tandeau de Marsac, N (1998) A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett. 427, 291295.
  • [69]
    Lee, H-M, Flores, E, Forchhammer, K, Herrero, A, Tandeau de Marsac, N (2000) Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the cyanobacterium Synechococcus sp. PCC 7942. Eur. J. Biochem. 267, 591600.
  • [70]
    Kobayashi, M, Rodriguez, R, Lara, C, Omata, T (1997) Involvement of th C-terminal domain of the ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp. strain PCC 7942. J. Biol. Chem. 272, 2129727201.
  • [71]
    Rodriguez, R, Kobayashi, M, Omata, T, Lara, C (1998) Independence of carbon and nitrogen control in the posttranslational regulation of nitrate transport in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett. 432, 207212.
  • [72]
    Vazquez-Bermudez, M.F, Paz-Yepes, J, Herrero, A, Flores, E (2002) The NtcA activated amt1 gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology 148, 861869.
  • [73]
    Martin, D.E, Reinhold-Hurek, B (2002) Distinct roles of PII-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. Strain BH 72. J. Bacteriol. 184, 22512259.
  • [74]
    Shibata, M, Ohkawa, H, Kaneko, T, Fukuzawa, H, Tabata, S, Kaplan, A, Ogawa, T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc. Natl. Acad. Sci. USA 98, 1178911794.
  • [75]
    Luque, I, Flores, E, Herrero, A (1994) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J. 13, 28622869.
  • [76]
    Muro-Pastor, A.M, Valladares, A, Flores, E, Herrero, A (2002) Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol. Microbiol. 44, 13771385.
  • [77]
    Meeks, J.C, Elhai, J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol. Mol. Biol. Rev. 66, 94121.
  • [78]
    Wolk, C.P (2000) Heterocyst formation in Anabaena. In: Prokaryotic Development (Brun, Y.V, Shimkets, L.J, Eds.), pp.83–104 American Society for Microbiology, Washington, DC.
  • [79]
    Herrero, A, Muro-Pastor, A.M, Flores, E (2001) Nitrogen control in cyanobacteria. J. Bacteriol. 183, 411425.
  • [80]
    Lee, H-M, Vazquez-Bermudez, M.F, Tandeau de Marsac, N (1999) The global nitrogen regulator NtcA regulates transcription of the signal transducer PII (GlnB) and influences its phosphorylation level in response to nitrogen and carbon supplies in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 181, 26972702.
  • [81]
    Sauer, J, Görl, M, Forchhammer, K (1999) Nitrogen starvation in Synechococcus PCC 7942: involvement of glutamine synthetase and NtcA in phycobiliprotein degradation and survival. Arch. Microbiol. 172, 247255.
  • [82]
    Crespo, J.L, Garcia-Dominguez, M, Florencio, F.J (1998) Nitrogen control of the glnN gene that codes for GS type III, the only glutamine synthetase in the cyanobacterium Pseudoanabaena sp. PCC 6903. Mol. Microbiol. 30, 11011112.
  • [83]
    Sauer, J, Dirmeier, U, Forchhammer, K (2000) The Synechococcus strain PCC 7942 glnN product (glutamine synthetase III) helps recovery from prolonged nitrogen chlorosis. J. Bacteriol. 182, 56125619.
  • [84]
    Reyes, J.C, Muro-Pastor, M.I, Florencio, F.J (1997) Transcription of glutamine synthetase genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is differently regulated in response to nitrogen availability. J. Bacteriol. 179, 26782689.
  • [85]
    Aldehni, M.F, Sauer, J, Spielhaupter, C, Schmid, R, Forchhammer, K (2002) Signal transduction protein PII is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942. J. Bacteriol. 185, 25822591.
  • [86]
    Paz-Yepes, J, Flores, E, Herrero, A (2003) Transcriptional effects of the signal transduction protein PII (glnB gene product) on NtcA-dependent genes in Synechococcus sp. PCC 7942. FEBS Lett. 543, 4246.
  • [87]
    Liotenberg, S, Campbell, D, Castets, A.-M, Houmard, J, Tandeau de Marsac, N (1996) Modification of the PII protein in response to carbon and nitrogen availability in filamentous heterocystous cyanobacteria. FEMS Microbiol. Lett. 144, 185190.
  • [88]
    Gonzalez, L, Phalip, V, Zhang, C.-C (2001) Characterization of PknC, a Ser/Thr kinase with broad substrate specificity from the cyanobacterium Anabaena sp. strain PCC 7120. Eur. J. Biochem. 268, 18691875.
  • [89]
    Tandeau de Marsac, N, Lee, H.M (1999) Regulation of carbon and nitrogen metabolism in the unicellular cyanobacterium Synechococcus spp. In: The Phototrophic Prokaryotes (Peschek, G, Löffelhardt, W, Schmetterer, G, Eds.), pp.539–548 Kluwer Academic, New York, NY.
  • [90]
    Muro-Pastor, M.I, Reyes, J.C, Florencio, F.J (2001) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J. Biol. Chem. 276, 3832038328.
  • [91]
    Muro-Pastor, M.I, Reyes, J.C, Florencio, F.J (1996) The NADP+-isocitrate dehydrogenase gene (icd) is nitrogen regulated in cyanobacteria. J. Bacteriol. 178, 40704076.
  • [92]
    Vazquez-Bermudez, M.F, Herrero, A, Flores, E (2002) 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promotor. FEBS Lett. 512, 7174.
  • [93]
    Tanigawa, R, Shirokane, M, Maeda, S.-i, Omata, T, Tanaka, K, Takahashi, H (2002) Transcriptional activation of NtcA-dependent promotors of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc. Natl. Acad. Sci. USA 99, 42514255.
  • [94]
    Vazquez-Bermudez, M.F, Herrero, A, Flores, E (2003) Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942. FEMS Microbiol. Lett. 221, 155159.