SEARCH

SEARCH BY CITATION

References

  • [1]
    Binder, S., Levitt, A.M., Sacks, J.J., Hughes, J.M. (1999) Emerging infectious diseases: public health issues for the 21st century. Science 284, 13111313.
  • [2]
    McCarty, M. (1985) The Transforming Principle. W.W. Norton & Co, New York.
  • [3]
    Avery, O.T., MacLeod, C.M., McCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med 79, 137158.
  • [4]
    McCarty, M. Discovering genes are made of DNA. Nature. 42, 2003. 406
  • [5]
    Schuchat, A., Robinson, K., Wenger, J.D., Harrison, L.H., Farley, M., Reingold, A.L., Lefkowitz, L., Perkins, B.A. (1997) Bacterial meningitis in the United States in 1995. N. Engl. J. Med 337, 970976.
  • [6]
    Fenoll, A., Jado, I., Vicioso, D., Pèrez, A., Casal, J. (1998) Evolution of Streptococcus pneumoniae serotypes and antibiotic resistance in Spain: update (1990 to 1996). J. Clin. Microbiol 36, 34473454.
  • [7]
    McCormick, A.W., Whitney, C.G., Farley, M.M., Lynfield, R., Harrison, L.H., Bennett, N.M., Schaffner, W., Reingold, A., Hadler, J., Cieslak, P., Samore, M.H., Lipsitch, M. (2003) Geographic diversity and temporal trends of antimicrobial resistance in Streptococcus pneumoniae in the United States. Nature Med 9, 424430.
  • [8]
    Avery, O.T., Goebel, W.F. (1929) Chemo-immunological studies on conjugated carbohydrate-proteins. II. Immunological specificity of synthetic sugar-protein antigens. J. Exp. Med 50, 533550.
  • [9]
    Griffith, F. (1928) The significance of pneumococcal types. J. Hyg 27, 113159.
  • [10]
    Kamerling, J.P. (2000) Pneumococcal polysaccharides: a chemical view. In: Streptococcus pneumoniae. Molecular Biology and Mechanisms of Disease (Tomasz, A., Ed.), pp.81–114 Mary Ann Liebert, Larchmont, NY.
  • [11]
    Ravin, A.W. (1960) Linked mutations borne by deoxyribonucleic acid controlling the synthesis of capsular polysaccharide in pneumococcus. Genetics 45, 13871403.
  • [12]
    Henrichsen, J. (1995) Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol 33, 27592762.
  • [13]
    García, E., Llull, D., Muñoz, R., Mollerach, M., López, R. (2000) Current trends in capsular polysaccharide biosynthesis of Streptococcus pneumoniae. Res. Microbiol 151, 429435.
  • [14]
    Arrecubieta, C., López, R., García, E. (1994) Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J. Bacteriol 176, 63756383.
  • [15]
    Muñoz, R., Mollerach, M., López, R., García, E. (1997) Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol. Microbiol 25, 7992.
  • [16]
    Lawrence, E.R., Arias, C.A., Duke, B., Beste, D., Broughton, K., Efstratiou, A., George, R.C., Hall, L.M. (2000) Evaluation of serotype prediction by cpsA–cpsB gene polymorphism in Streptococcus pneumoniae. J. Clin. Microbiol 38, 13191323.
  • [17]
    McEllistrem, M.C., Noller, A.C., Visweswaran, S., Adams, J.M., Harrison, L.H. (2004) Serotype 14 variants of the France 9V-3 clone from Baltimore, Maryland, can be differentiated by cpsB gene. J. Clin. Microbiol 42, 250256.
  • [18]
    Kong, F., Gilbert, G.L. (2003) Using cpsA–cpsB sequence polymorphisms and serotype-/group-specific PCR to predict 51 Streptococcus pneumoniae capsular serotypes. J. Med. Microbiol 52, 10471058.
  • [19]
    Morona, J.K., Morona, R., Miller, D.C., Paton, J.C. (2002) Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J. Bacteriol 184, 577583.
  • [20]
    Paton, J.C., Morona, J.K. (2000) Streptococcus pneumoniae capsular polysaccharide. In: Gram-Positive Pathogens (Fischetti, V.A., Novick, R.P., Ferreti, J.J., Portnoy, D.A., Rood, J.I., Eds.), pp.201–213 ASM Press, Washington, DC.
  • [21]
    Kolkman, M.A., Morrison, D.A., van der Zeijst, B.A., Nuijten, P.J. (1996) The capsule polysaccharide synthesis locus of Streptococcus pneumoniae serotype 14: identification of the glycosyl transferase gene cps14E. J. Bacteriol 178, 37363741.
  • [22]
    Iannelli, F., Pearce, B.J., Pozzi, G. (1999) The type 2 capsule locus of Streptococcus pneumoniae. J. Bacteriol 181, 26522654.
  • [23]
    Muñoz, R., Mollerach, M., López, R., García, E. (1999) Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J. Bacteriol 181, 62146219.
  • [24]
    Arrecubieta, C., García, E., López, R. (1995) Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167, 17.
  • [25]
    Mollerach, M., López, R., García, E. (1998) Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med 188, 20472056.
  • [26]
    Frey, P.A. (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10, 461470.
  • [27]
    Hardy, G.G., Caimano, M.J., Yother, J. (2000) Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J. Bacteriol 182, 18541863.
  • [28]
    Hardy, G.G., Magee, A.D., Ventura, C.L., Caimano, M.J., Yother, J. (2001) Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun 69, 23092317.
  • [29]
    Arrecubieta, C., López, R., García, E. (1996) Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J. Exp. Med 184, 449455.
  • [30]
    Cartee, R.T., Forsee, W.T., Schutzbach, J.S., Yother, J. (2000) Mechanism of type 3 capsular polysaccharide synthesis in Streptococcus pneumoniae. J. Biol. Chem 275, 39073914.
  • [31]
    Forsee, W.T., Cartee, R.T., Yother, J. (2000) Biosynthesis of type 3 capsular polysaccharide in Streptococcus pneumoniae. Enzymatic chain release by an abortive translocation process. J. Biol. Chem 275, 2597225978.
  • [32]
    Cartee, R.T., Forsee, W.T., Jensen, J.W., Yother, J. (2001) Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli. Assembly of type 3 polysaccharide on a lipid primer. J. Biol. Chem 276, 4883148839.
  • [33]
    Llull, D., López, R., García, E., Muñoz, R. (1998) Molecular structure of the gene cluster responsible for the synthesis of the polysaccharide capsule of Streptococcus pneumoniae type 33F. Biochim. Biophys. Acta 1443, 217224.
  • [34]
    Llull, D., Muñoz, R., López, R., García, E. (1999) A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide: type 37 pneumococci are natural, genetically binary strains. J. Exp. Med 190, 241251.
  • [35]
    Llull, D., López, R., García, E. (2000) Clonal origin of the type 37 Streptococcus pneumoniae. Microb. Drug Resist 6, 269275.
  • [36]
    Mollerach, M., García, E. (2000) The galU gene of Streptococcus pneumoniae that codes for a UDP-glucose pyrophosphorylase is highly polymorphic and suitable for molecular typing and phylogenetic studies. Gene 260, 7786.
  • [37]
    Coffey, T.J., Enright, M.C., Daniels, M., Morona, J.K., Morona, R., Hryniewicz, W., Paton, J.C., Spratt, B.G. (1998) Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol. Microbiol 27, 7383.
  • [38]
    Bender, M.H., Cartee, R.T., Yother, J. (2003) Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol 185, 60576066.
  • [39]
    Morona, J.K., Paton, J.C., Miller, D.C., Morona, R. (2000) Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol 35, 14311442.
  • [40]
    Weiser, J.N., Bae, D., Epino, H., Gordon, S.B., Kapoor, M., Zenewicz, L.A., Shchepetov, M. (2001) Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun 69, 54305439.
  • [41]
    Morona, J.K., Morona, R., Miller, D.C., Paton, J.C. (2003) Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol 185, 30093019.
  • [42]
    Kim, J.O., Weiser, J.N. (1998) Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis 177, 368377.
  • [43]
    Ogunniyi, A.D., Giammarinaro, P., Paton, J.C. (2002) The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148, 20452053.
  • [44]
    Giammarinaro, P., Paton, J.C. (2002) Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect. Immun 70, 54545461.
  • [45]
    Waite, R.D., Struthers, J.K., Dowson, C.G. (2001) Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol. Microbiol 42, 12231232.
  • [46]
    Waite, R.D., Penfold, D.W., Struthers, J.K., Dowson, C.G. (2003) Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149, 497504.
  • [47]
    Mäkelä, P.H., Stocker, B.A.D. (1969) Genetic of polysaccharide biosynthesis. Annu. Rev. Genet 3, 291322.
  • [48]
    Coffey, T.J., Daniels, M., Enright, M.C., Spratt, B.G. (1999) Serotype 14 variants of the Spanish penicillin-resistant serotype 9V clone of Streptococcus pneumoniae arose by large recombinational replacements of the cpsA–pbp1a region. Microbiology 145, 20232031.
  • [49]
    Meats, E., Brueggemann, A.B., Enright, M.C., Sleeman, K., Crook, D.W., Spratt, B.G. (2003) Stability of serotypes during nasopharyngeal carriage of Streptococcus pneumoniae. J. Clin. Microbiol 41, 386392.
  • [50]
    Coffey, T.J., Dowson, C.G., Daniels, M., Zhou, J., Martin, C., Spratt, B.G., Musser, J.M. (1991) Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol. Microbiol 5, 22552260.
  • [51]
    Nesin, M., Ramirez, M., Tomasz, A. (1998) Capsular transformation of a multidrug-resistant Streptococcus pneumoniae in vivo. J. Infect. Dis 177, 707713.
  • [52]
    Tettelin, H., Nelson, K.E., Paulsen, I.T., Eisen, J.A., Read, T.D., Peterson, S., Heidelber, J., DeBoy, R.T., Haft, D.H., Dodson, R.J., Durkin, A.S., Gwinn, M., Kolonay, J.F., Nelson, W.C., Peterson, J.D., Umayam, L.A., White, O., Salzberg, S.L., Lewis, M.R., Radune, D., Holtzapple, E., Khouri, H., Wolf, A.M., Utterback, T.R., Hansen, C.L., McDonald, L.A., Feldblyum, T.V., Angiuoli, S., Dickinson, T., Hickey, E.K., Holt, I.E., Loftus, B.J., Yang, F., Smith, H.O., Venter, J.C., Dougherty, B.A., Morrison, D.A., Hollingshead, S.K., Fraser, C.M. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498506.
  • [53]
    Trzcinski, K., Thompson, C.M., Lipsitch, M. (2003) Construction of otherwise isogenic serotype 6B, 7F, 14, and 19F capsular variants of Streptococcus pneumoniae strain TIGR4. Appl. Environ. Microbiol 69, 73647370.
  • [54]
    Van Selm, S., Van Cann, L.M., Kolkman, M.A.B., van der Zeijst, B.A.M., Van Putten, J.P.M. (2003) Genetic basis for the structural differences between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. J. Bacteriol 71, 61926198.
  • [55]
    García, E., Llull, D., López, R. (1999) Functional organization of the gene cluster involved in the synthesis of the pneumococcal capsule. Internatl. Microbiol 2, 169176.
  • [56]
    Muñoz, R., López, R., García, E. (1998) Characterization of IS1515, a functional insertion sequence in Streptococcus pneumoniae. J. Bacteriol 180, 13811388.
  • [57]
    Tomasz, A. (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the β-lactam antibiotics kill and lyse bacteria. Annu. Rev. Microbiol 33, 113137.
  • [58]
    Höltje, J.V., Tomasz, A. (1975) Lipoteichoic acid: a specific inhibitor of autolysin activity in pneumococcus. Proc. Natl. Acad. Sci. USA 72, 16901694.
  • [59]
    Tomasz, A., Fischer, W. (2000) The cell wall of Streptococcus pneumoniae. In: Gram-Positive Pathogens (Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A., Rood, J.I., Eds.), pp.191–200 ASM Press, Washington, DC.
  • [60]
    García, P., González, M.P., García, E., García, J.L., López, R. (1999) The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol. Microbiol 33, 128138.
  • [61]
    García, P., González, M.P., García, E., López, R., García, J.L. (1999) LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol. Microbiol 31, 12751277.
  • [62]
    Höltje, J.V., Tomasz, A. (1976) Purification of the pneumococcal N-acetylmuramyl-l-alanine amidase to biochemical homogeneity. J. Biol. Chem 251, 41994207.
  • [63]
    De las Rivas, B., García, J.L., López, R., García, P. (2001) Molecular characterization of the pneumococcal teichoic acid phosphorylcholine esterase. Microb. Drug Resist 7, 213222.
  • [64]
    Vollmer, W., Tomasz, A. (2001) Identification of the teichoic acid phosphocholine esterase in Streptococcus pneumoniae. Mol. Microbiol 39, 16101622.
  • [65]
    García, E., García, J.L., Ronda, C., García, P., López, R. (1985) Cloning and expression of the pneumococcal autolysin gene in Escherichia coli. Mol. Gen. Genet 201, 225230.
  • [66]
    Tomasz, A., Westphal, M. (1971) Abnormal autolytic enzyme in a pneumococcus with altered teichoic acid composition. Proc. Natl. Acad. Sci. USA 68, 26272630.
  • [67]
    Díaz, E., García, J.L. (1990) Characterization of the transcription unit encoding the major pneumococcal autolysin. Gene 90, 157162.
  • [68]
    Mortier-Barrière, I., De Saizieu, A., Claverys, J.P., Martin, B. (1998) Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol. Microbiol 27, 159170.
  • [69]
    de las Rivas, B. (2002). Aislamiento y caracterización de nuevas proteínas de unión a colina de Streptococcus pneumoniae. In: Microbiología II Universidad Complutense, Madrid
  • [70]
    Díaz, E., Munthali, M., Lunsdorf, H., Höltje, J.-V., Timmis, K.N. (1996) The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli. Mol. Microbiol 19, 667681.
  • [71]
    Romero, A., Lopez, R., Garcia, P. (1993) Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. FEMS Microbiol. Lett 108, 8792.
  • [72]
    Tomasz, A. (1968) Biological consequences of the replacement of choline by ethanolamine in the cell wall of Pneumococcus: chain formation, loss of transformability, and loss of autolysis. Proc. Natl. Acad. Sci. USA 59, 8693.
  • [73]
    García, E., García, J.L., García, P., Arrarás, A., Sánchez-Puelles, J.M., López, R. (1988) Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc. Natl. Acad. Sci. USA 85, 914918.
  • [74]
    López, R., García, E., García, P., García, J.L. (1997) The pneumococcal cell wall degrading enzymes: a modular design to create new lysins. Microb. Drug Resist 3, 199211.
  • [75]
    Sanz, J.M., Díaz, E., García, J.L. (1992) Studies on the structure and function of the N-terminal domain of the pneumococcal murein hydrolases. Mol. Microbiol 6, 921931.
  • [76]
    Sánchez-Puelles, J.M., Sanz, J.M., García, J.L., García, E. (1990) Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases. Gene 89, 6975.
  • [77]
    Jedrzejas, M.J. (2001) Pneumococcal virulence factors: structure and function. Microbiol. Mol. Biol. Rev 65, 187207.
  • [78]
    García, J.L., Díaz, E., Romero, A., García, P. (1994) Carboxy-terminal deletion analysis of the major pneumococcal autolysin. J. Bacteriol 176, 40664072.
  • [79]
    De las Rivas, B., García, J.L., López, R., García, P. (2002) Purification and polar localization of pneumococcal LytB, a putative endo-β-N-acetylglucosaminidase: the chain-dispersing murein hydrolase. J. Bacteriol 184, 49885000.
  • [80]
    Garcia-Bustos, J.F., Tomasz, A. (1987) Teichoic acid-containing muropeptides from Streptococcus pneumoniae as substrates for the pneumococcal autolysin. J. Bacteriol 169, 447453.
  • [81]
    Yother, J., Leopold, K., White, J., Fischer, W. (1998) Generation and properties of a Streptococcus pneumoniae mutant which does not require choline or analogs for growth. J. Bacteriol 180, 20932101.
  • [82]
    Severin, A., Horne, D., Tomasz, A. (1997) Autolysis and cell wall degradation in a choline-independent strain of Streptococcus pneumoniae. Microb. Drug Resist 3, 391400.
  • [83]
    Usobiaga, P., Medrano, F.J., Gasset, M., Garcia, J.L., Saiz, J.L., Rivas, G., Laynez, J., Menendez, M. (1996) Structural organization of the major autolysin from Streptococcus pneumoniae. J. Biol. Chem 271, 68326838.
  • [84]
    Varea, J., Saiz, J., López-Zumel, C., Monterroso, B., Medrano, F.J., Arrondo, J.L., Iloro, I., Laynez, J., García, J.L., Menéndez, M. (2000) Do sequence repeats play an equivalent role in the choline-binding module of pneumococcal LytA amidase. J. Biol. Chem 275, 2684226855.
  • [85]
    Fernández-Tornero, C., López, R., García, E., Giménez-Gallego, G., Romero, A. (2001) A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nature Struct. Biol 8, 10201024.
  • [86]
    Fernández-Tornero, C., Ramón, A., Fernández-Cabrera, C., Giménez-Gallego, G., Romero, A. (2002) Expression, crystallization and preliminary X-ray diffraction studies on the complete choline-binding domain of the major pneumococcal autolysin. Acta Crystallogr. Section D, Biol. Crystallogr 58, 556558.
  • [87]
    Sánchez-Puelles, J.M., García, J.L., López, R., García, E. (1987) 3-End modifications of the Streptococcus pneumoniae lytA gene: role of the carboxy terminus of the pneumococcal autolysin in the process of enzymatic activation (conversion). Gene 61, 1319.
  • [88]
    Fernández-Tornero, C., García, E., López, R., Giménez-Gallego, G., Romero, A. (2002) Two new crystal forms of the choline-binding domain of the major pneumococcal autolysin: insights into the dynamics of the active homodymer. J. Mol. Biol 321, 163173.
  • [89]
    Heidrich, C., Ursinus, A., Berger, J., Schwarz, H., Höltje, J.-V. (2002) Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J. Bacteriol 184, 60936099.
  • [90]
    Lacks, S., Neuberger, M. (1975) Membrane localization of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. J. Bacteriol 124, 13211329.
  • [91]
    Briese, T., Hackenbeck, R. (1985) Interaction of the pneumococcal amidase with lipoteichoic acid and choline. Eur. J. Biochem 146, 417427.
  • [92]
    Yother, J., White, J.M. (1994) Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J. Bacteriol 176, 29762985.
  • [93]
    Díaz, E., García, E., Ascaso, C., Méndez, E., López, R., García, J.L. (1989) Subcellular localization of the major pneumococcal autolysin: a peculiar mechanism of secretion in Escherichia coli. J. Biol. Chem 264, 12381244.
  • [94]
    Ronda, C., García, J.L., García, E., Sánchez-Puelles, J.M., López, R. (1987) Biological role of the pneumococcal amidase. Cloning of the lytA gene in Streptococcus pneumoniae. Eur. J. Biochem 164, 621624.
  • [95]
    Tomasz, A., Waks, S. (1975) Enzyme replacement in a bacterium: phenotypic correction by the experimental introduction of the wild type enzyme into a live enzyme defective mutant pneumococcus. Biochem. Biophys. Res. Commun 65, 13111319.
  • [96]
    Paterson, G.K., Mitchell, T.J. (2004) The biology of Gram-positive sortase enzymes. Trends Microbiol 12, 8995.
  • [97]
    Young, R. (2002) Bacteriophage holins: deadly diversity. J. Mol. Microbiol. Biotechnol 4, 2136.
  • [98]
    Rice, K.C., Firek, B.A., Nelson, J.B., Yang, S.J., Patton, T.G., Bayles, K.W. (2003) The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance. J. Bacteriol 185, 26352643.
  • [99]
    Lenz, L.L., Mohammadi, S., Geissler, A., Portnoy, D.A. (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocyrogenes pathogenesis. Proc. Natl. Acad. Sci. USA 100, 1243212437.
  • [100]
    Takamatsu, D., Bensing, B.A., Sullam, P.M. (2004) Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding factor protein GspB. Mol. Microbiol 52, 189203.
  • [101]
    Lenz, L.L., Portnoy, D.A. (2002) Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol. Microbiol 45, 10431056.
  • [102]
    Hoskins, J., Alborn, W.E., Arnold, J., Blaszczak, L.C., Burgett, S., DeHoff, B.S., Estrem, S.T., Fritz, L., Fu, D.-J., Fuller, W., Geringer, C., Gilmour, R., Glass, J.S., Khoje, H., Kraft, A.R., Lagace, R.E., LeBlanc, D.J., Lee, L.N., Lefkowitz, E.J., Lu, J., Matsushima, P., McAhren, S.M., McHenney, M., McLeaster, K., Mundy, C.W., Nicas, T.I., Norris, F.H., O'gara, M., Peery, R.B., Robertson, G.T., Rockey, P., Sun, P.-M., Winkler, M.E., Yang, Y., Young-Bellido, M., Zhao, G., Zook, C.A., Baltz, R.H., Jaskunas, R., Rosteck, P.R.J., Skatrud, P.L., Glass, J.I. (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol 183, 57095717.
  • [103]
    Xu, Y., Struck, D.K., Deaton, J., Wang, I-N., Young, R. (2004) A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. Proc. Natl. Acad. Sci. USA 59, 8693.
  • [104]
    Novak, R., Charpentier, E., Braun, J.S., Park, E., Murti, S., Tuomanen, E., Masure, R. (2000) Extracellular targeting of choline-binding proteins in Streptococcus pneumoniae by a zinc metalloprotease. Mol. Microbiol 36, 366376.
  • [105]
    Bergé, M., García, P., Iannelli, F., Prere, M.F., Granadel, C., Polissi, A., Claverys, J.P. (2001) The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation of choline-binding proteins in Streptococcus pneumoniae. Mol. Microbiol 39, 16511660.
  • [106]
    Sánchez-Puelles, J.M., Ronda, C., García, J.L., García, P., López, R., García, E. (1986) Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. Eur. J. Biochem 158, 289293.
  • [107]
    Lybarger, S.R., Maddock, J.R. (2001) Polarity in action: asymmetric protein localization in bacteria. J. Bacteriol 183, 32613267.
  • [108]
    Sánchez-Puelles, J.M., Ronda, C., García, E., Méndez, E., García, J.L., López, R. (1986) A new peptidoglycan hydrolase in Streptococcus pneumoniae. FEMS Microbiol. Lett 35, 163166.
  • [109]
    Höltje, J.V., Tomasz, A. (1974) Teichoic acid phosphorylcholine esterase. A novel enzyme activity in pneumococcus. J. Biol. Chem 249, 70327034.
  • [110]
    Seto, H., Tomasz, A. (1975) Protoplast formation and leakage of intramembrane cell components: induction by the competence activator substance of pneumococci. J. Bacteriol 121, 344353.
  • [111]
    Peterson, S., Cline, R.T., Tettelin, H., Sharov, V., Morrison, D.A. (2000) Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J. Bacteriol 182, 61926202.
  • [112]
    Rimini, R., Jansson, B., Feger, G., Roberts, T.C., De Francesco, M., Gozzi, A., Faggioni, F., Domenici, E., Wallace, D.M., Frandsen, N., Polissi, A. (2000) Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol. Microbiol 36, 12791292.
  • [113]
    Dagkessamanskaia, A., Moscoso, M., Hénard, V., Guiral, S., Overveg, K., Reuter, M., Martin, B., Wells, J., Claverys, J.P. (2004) Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of CiaR mutant cells. Mol. Microbiol 51, 10711086.
  • [114]
    Peterson, S., Sung, C.K., Cline, R.T., Desai, B.V., Snesrud, E., Luo, P. Identification of competence pheromone responsive genes in Streptococcus pneumoniae. Mol. Microbiol. 2004. 1051–1070
  • [115]
    Bartilson, M., Marra, A., Christine, J., Asundi, J., Schneider, W.P., Hromockyl, A.E. (2001) Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol. Microbiol 39, 126135.
  • [116]
    García, E., García, J.L., García, P., Ronda, C., Sánchez-Puelles, J.M., López, R. (1987) Molecular genetics of the pneumococcal amidase: characterization of lytA mutants. In: Streptococcal Genetics (Ferreti III, J.J., Curtis, R., Eds.), pp.189–192 ASM Press, Washington, DC.
  • [117]
    Tomasz, A., Moreillon, P., Pozzi, G. (1988) Insertional inactivation of the major autolysin gene of Streptococcus pneumoniae. J. Bacteriol 170, 59315934.
  • [118]
    Charpentier, E., Novak, R., Tuomanen, E. (2000) Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by clpC. Mol. Microbiol 37, 717726.
  • [119]
    Chastanet, A., Prudhomme, M., Claverys, J.P., Msadek, T. (2001) Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J. Bacteriol 183, 72957307.
  • [120]
    Robertson, G.T., Ng, W.-L., Gilmour, R., Winckler, M.E. (2003) Essentiality of clpX, but not clpP, clpL, clpC, or clpE, in Streptococcus pneumoniae R6. J. Bacteriol 185, 29612966.
  • [121]
    Kwon, H.-Y., Kim, S.-W., Choi, M.-H., Ogunniyi, A.D., Paton, J.C., Park, S.-H., Pyo, S.-N, Rhee, D.-K. (2003) Effect of heat shock and mutations in ClpL and ClpP on virulence gene expression in Streptococcus pneumoniae. Infect. Immun 71, 37573765.
  • [122]
    Hakenbeck, R., Grebe, T., Zänher, D., Stock, J.B. (1999) β-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol. Microbiol 33, 673678.
  • [123]
    Echenique, J.R., Chapuy Regaud, S., Trombe, M.-C. (2000) Competence regulation by oxygen in Streptococcus pneumoniae: involvement of ciaRH and comCDE. Mol. Microbiol 36, 688696.
  • [124]
    Martin, B., Prudhomme, M., Alloing, G., Granadel, C., Claverys, J.P. (2000) Cross-regulation of the competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol. Microbiol 38, 867878.
  • [125]
    Lange, R., Wagner, C., De Saizieu, A., Flint, N., Molnos, J., Stieger, M., Caspers, P., Kamber, M., Keck, W., Amrein, K.E. (1999) Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237, 223234.
  • [126]
    Giammarinaro, P., Sicard, M., Gasc, A.M. (1999) Genetic and physiological studies of the CiaH-CiaR two component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae. Microbiology 145, 18591869.
  • [127]
    Ottolenghi-Nightingale, E. (1969) Spontaneously occurring bacterial transformations in mice. J. Bacteriol 100, 445452.
  • [128]
    Ottolenghi-Nightingale, E. (1972) Competence of pneumococcal isolates and bacterial transformation in man. Infect. Immun 6, 785792.
  • [129]
    Ottolenghi, E., Hotchkiss, R.D. (1960) Appearance of genetic transforming activity in pneumococcal cultures. Science 132, 12571258.
  • [130]
    Ottolenghi, E., Hotchkiss, R.D. (1962) Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J. Exp. Med 116, 491519.
  • [131]
    Steinmoen, H., Knutsen, E., Håvarstein, L.S. (2002) Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl. Acad. Sci. USA 99, 76817686.
  • [132]
    Ramirez, M. (1998). DNA exchange in natural populations of Streptococcus pneumoniae. In: Biotechnology, Universidade Nova de Lisboa, Lisbon
  • [133]
    Steinmoen, H., Teigen, A., Håvarstein, L.S. (2003) Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol 185, 71767183.
  • [134]
    Tuomanen, E. (1999) Molecular and cellular biology of pneumococcal infections. Curr. Opin. Microbiol 2, 3539.
  • [135]
    Berry, A.M., Paton, J.C. (2000) Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun 68, 133140.
  • [136]
    Tomasz, A., Albino, A., Zanati, E. (1970) Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 227, 138140.
  • [137]
    Tuomanen, E. (1986) Phenotypic tolerance: the search for beta lactam antibiotics that kill non-growing bacteria. Rev. Infect. Dis 8, S279S291.
  • [138]
    Handwerger, S., Tomasz, A. (1985) Antibiotic tolerance among clinical isolates of bacteria. Rev. Infect. Dis 7, 368386.
  • [139]
    Tuomanen, E., Pollack, H., Parkinson, A., Davidson, M., Fackland, R., Rich, R., Zak, O. (1988) Microbiological and clinical significance of a new property of defective lysis in clinical strains of pneumococci. J. Infect. Dis 158, 3643.
  • [140]
    Liu, H.H., Tomasz, A. (1985) Penicillin tolerance in multiply drug-resistant natural isolates of Streptococcus pneumoniae. J. Infect. Dis 152, 365372.
  • [141]
    Fernebro, J., Andersson, I., Sublett, J., Morfeld, E., Novak, R., Tuomanen, E., Normark, S., Normark, D.H. (2004) Capsular expression in Streptococcus pneumoniae negatively affects spontaneous and antibiotic-induced lysis and contributes to antibiotic tolerance. J. Infect. Dis 189, 328338.
  • [142]
    Gosink, K.K., Mann, E.R., Guglielmo, C., Tuomanen, E.I., Masure, H.R. (2000) Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. Immun 68, 56905695.
  • [143]
    Musher, D.M., Breiman, R.F., Tomasz, A. (2000) Streptococcus pneumoniae: at the threshold of the 21st century. In: Molecular Biology and Mechanism of Disease (Tomasz, A.e., Ed.), pp.485–491 Mary Ann Liebert, Inc, Larchmont, NY.
  • [144]
    Twort, F.W. An investigation on the nature of the ultramicroscopic viruses. Lancet. ii, 1915. 1241
  • [145]
    D'Herelle, F. (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. Compt. Rend. Acad. Sci 165, 373375.
  • [146]
    McDonnell, M., Ronda-Laín, C., Tomasz, A. (1975) Diplophage: a bacteriophage of Diplococcus pneumoniae. Virology 63, 577582.
  • [147]
    Tiraby, J.G., Tiraby, E., Fox, M.S. (1975) Pneumococcal bacteriophages. Virology 68, 566569.
  • [148]
    García, P., Martín, A.C., López, R. (1997) Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb. Drug Resist 3, 165176.
  • [149]
    Schuch, R., Nelson, D., Fischetti, V.A. (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884889.
  • [150]
    Bernheimer, H.P. (1977) Lysogeny in pneumococci freshly isolated from man. Science 195, 6668.
  • [151]
    Ramirez, M., Severina, E., Tomasz, A. (1999) A high incidence of prophage carriage among natural isolates of Streptococcus pneumoniae. J. Bacteriol 181, 36183625.
  • [152]
    Martín, A.C., López, R., García, P. (1996) Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1. J. Virol 70, 36783687.
  • [153]
    Pelletier, J., Gros, P., and Dubow, M. (2000). Development of novel anti-microbial agents based on bacteriophage genomics. In: PhageTech, Inc., Patent WO0032825A2
  • [154]
    Obregón, V., García, J.L., García, E., López, R., García, P. (2003) Genome organization and molecular analysis of the temperate bacteriophage MM1 of Streptococcus pneumoniae. J. Bacteriol 185, 23622368.
  • [155]
    Romero, P., López, R., García, E. (2004) Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology 322, 239252.
  • [156]
    Gindreau, E., López, R., García, P. (2000) MM1, a temperate bacteriophage of the 23F Spanish/USA multiresistant epidemic clone of Streptococcus pneumoniae: structural analysis of the site-specific integration system. J. Virol 74, 78037813.
  • [157]
    Wagner, P.L., Waldor, M.K. (2002) Bacteriophage control of bacterial virulence. Infect. Immun 70, 39853993.
  • [158]
    Canchaya, C., Proux, C., Fournous, G., Bruttin, A., Brüssow, H. (2003) Prophage genomics. Microbiol. Mol. Biol. Rev 67, 238276.
  • [159]
    Boyd, E.F., Brüssow, H. (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10, 521529.
  • [160]
    Pedulla, M.L., Ford, M.E., Houtz, J.M., Karthikeyan, T., Wadsworth, C., Lewis, J.A., Jacobs-Sera, D., Falbo, J., Gross, J., Pannunzio, N.R., Brucker, W., Kumar, V., Kandasamy, J., Keenan, L., Bardarov, S., Kriakov, J., Lawrence, J.G., Jacobs, W.R., Hendrix, R.W., Hatfull, G.F. (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171182.
  • [161]
    García, P., García, J.L., López, R., and Garcia, E. (in press). Pneumococcal bacteriophages. In: Bacteriophages and Bacterial Pathogens (Waldor, M., Friedman, D., Adhya, S., Eds.). ASM Press, Washington, DC
  • [162]
    Ronda, C., García, J.L., López, R. (1989) Infection of Streptococcus oralis NCTC 11427 by pneumococcal phages. FEMS Microbiol. Lett 65, 187192.
  • [163]
    García, P., Martín, A.C., López, R. (2000) Bacteriophages of Streptococcus pneumoniae: a molecular approach. In: Streptococcus pneumoniae– Molecular Biology and Mechanisms of Disease (Tomasz, A., Ed.), pp.211–222 Mary Ann Liebert, Inc, Larchmont, NY.
  • [164]
    Lopez, R., Garcia, E., Garcia, P., Ronda, C., Tomasz, A. (1982) Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J. Bacteriol 151, 15811590.
  • [165]
    Rasmussen, M., Jacobsson, M., Björk, L. (2003) Genome-based identification and analysis of collagen-related structural motifs in bacteria and viral proteins. J. Biol. Chem 278, 3231332316.
  • [166]
    Salas, M. (1991) Protein-priming of DNA replication. Annu. Rev. Biochem 60, 3971.
  • [167]
    Meijer, W.J.J., Horcajadas, J.A., Salas, M. (2001) φ29 family of phages. Microbiol. Mol. Biol. Rev 65, 261287.
  • [168]
    García, P., Hermoso, J.M., García, J.A., García, E., García, J.L., López, R., Salas, M. (1986) Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5-dAMP. J. Virol 58, 3135.
  • [169]
    Escarmís, C., Gómez, A., García, E., Ronda, C., López, R., Salas, M. (1984) Nucleotide sequence at the termini of the DNA of Streptococcus pneumoniae phage Cp-1. Virology 133, 166171.
  • [170]
    Escarmís, C., García, P., Méndez, E., López, R., Salas, M., García, E. (1985) Inverted terminal repeats and terminal proteins of the genome of pneumococcal phages. Gene 36, 341348.
  • [171]
    Romero, A., López, R., Lurz, R., García, P. (1990) Temperate bacteriophages of Streptococcus pneumoniae that contain protein covalently linked to the 5 ends of their DNA. J. Virol 64, 51495155.
  • [172]
    Brüssow, H. (2001) Phages of dairy bacteria. Annu. Rev. Microbiol 55, 283303.
  • [173]
    García, E., Ronda, C., López, R. (1979) Bacteriophages of Streptococcus pneumoniae. Physicochemical properties of bacteriophage Dp-4 and its transfecting DNA. Eur. J. Biochem 101, 5964.
  • [174]
    Martín, A.C., López, R., García, P. (1995) Nucleotide sequence and transcription of the left early region of Streptococcus pneumoniae bacteriophage Cp-1 coding for the terminal protein and the DNA polymerase. Virology 211, 2132.
  • [175]
    Martín, A.C., Blanco, L., García, P., Salas, M., Méndez, J. (1996) In vitro protein-primed initiation of pneumococcal phage Cp-1 DNA replication occurs at the third 3 nucleotide of the linear template: a stepwise sliding-back mechanism. J. Mol. Biol 260, 369377.
  • [176]
    López, R., Ronda, C., García, P., Escarmís, C., García, E. (1984) Restriction cleavage maps of the DNAs of Streptococcus pneumoniae bacteriophages containing protein covalently bound to their 5 ends. Mol. Gen. Genet 197, 6774.
  • [177]
    Obregón, V., García, P., López, R., García, J.L. (2003) Molecular and biochemical analysis of the system regulating the lytic/lysogenic cycle in the pneumococcal temperate phage MM1. FEMS Microbiol. Lett 222, 193197.
  • [178]
    Díaz, E., López, R., García, J.L. (1992) EJ-1, a temperate bacteriophage of Streptococcus pneumoniae with a Myoviridae morphotype. J. Bacteriol 174, 55165525.
  • [179]
    Desiere, F., McShan, W.M., Van Sinderen, D., Ferretti, J.J., Brüssow, H. (2001) Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage–host interactions. Virology 288, 325341.
  • [180]
    Desiere, F., Mahanivong, C., Hillier, A.J., Chandry, P.S., Davidson, B.E., Brüssow, H. (2001) Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Virology 283, 240252.
  • [181]
    Bruttin, A., Desiere, F., Lucchini, S., Foley, S., Brüssow, H. (1997) Characterization of the lysogeny module from the temperate Streptococcus thermophilus bacteriophage Sfi21. Virology 233, 136148.
  • [182]
    Sampath, J., Vijayakumar, M.N. (1998) Identification of a DNA cytosine methyltransferase gene in conjugative transposon Tn5252. Plasmid 39, 6376.
  • [183]
    Hendrix, R.E., Lawrence, J.G., Hatfull, G.F., Casjens, S. (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8, 504508.
  • [184]
    Low, D.A., Weyand, N.J., Mahan, M.J. (2001) Roles of adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun 69, 71977204.
  • [185]
    Zheng, W., Kathariou, S. (1997) Host-mediated modification of Sau3AI restriction in Listeria monocytogenes: prevalence in epidemic-associated strains. Appl. Environ. Microbiol 63, 30853089.
  • [186]
    Obregón, V., García, P., López, R., García, J.L. (2003) VO1, a temperate bacteriophage of the type 19A multiresistant epidemic 8249 strain of Streptococcus pneumoniae: analysis of variability of lytic and putative C5 methyltransferase genes. Microb. Drug Resist 9, 715.
  • [187]
    Lee, K.F., Kam, K.M., Shaw, P.C. (1995) A bacterial methyltransferase M.EcoHK311 requires two proteins for in vitro methylation. Nucleic Acids Res 23, 103108.
  • [188]
    Radlinska, M., Bujnicki, J.M., Piekarowicz, A. (1999) Structural characterization of two tandemly arranged DNA methyltransferase genes from Neisseria gonorrhoeae MS11: N4-cytosine specific M. NgoMXV and nonfunctional 5-cytosine-type M.NgoMorf2P. Proteins 37, 717728.
  • [189]
    Voelker, L.L., Dybvig, K. (1999) Sequence analysis of the Mycoplasma arthritidis bacteriophage MAV1 genome identifies the putative virulence factor. Gene 233, 101107.
  • [190]
    Gründling, A., Manson, M.D., Young, R. (2001) Holins kill without warning. Proc. Natl. Acad. Sci. USA 98, 93489352.
  • [191]
    García, P., García, J.L., García, E., Sánchez-Puelles, J.M., López, R. (1990) Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86, 8188.
  • [192]
    Siboo, I.R., Bensing, B.A., Sullam, P.M. (2003) Genomic organization and molecular characterization of SM1, a temperate bacteriophage of Streptococcus mitis. J. Bacteriol 185, 69686975.
  • [193]
    Sheehan, M.M., García, J.L., López, R., García, P. (1997) The lytic enzyme of the pneumococcal phage Dp-1: a chimeric lysin of intergeneric origin. Mol. Microbiol 25, 717725.
  • [194]
    Haro, A., Vélez, M., Goormaghtigh, E., Lago, S., Vázquez, J., Andreu, D., Gasset, M. (2003) Reconstitution of holin activity with a synthetic peptide containing the 1–32 sequence region of Ejh, the EJ-1 phage holin. J. Biol. Chem 278, 39293936.
  • [195]
    Hermoso, J.A., Monterroso, B., Albert, A., Galán, B., Ahrazem, O., García, P., Martínez-Ripoll, M., García, J.L., Menéndez, M. (2003) Structural basis for selective recognition of the pneumococcal cell wall by modular endolysin from phage Cp-1. Structure 11, 12391249.
  • [196]
    Travis, J. (1994) Reviving the antibiotic miracle. Science 264, 360362.
  • [197]
    Sulakvelidze, A., Morris, J.G. (2001) Bacteriophages as therapeutic agents. Ann. Med 33, 507509.
  • [198]
    Summers, W.C. (2001) Bacteriophage therapy. Annu. Rev. Microbiol 55, 437451.
  • [199]
    Biswas, B., Adhya, S., Washart, P., Paul, B., Trostel, A.N., Powell, B., Carlton, R., Merril, C.R. (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun 70, 204210.
  • [200]
    Whitney, C.G., Farley, M.M., Hadler, J., Harrison, L.H., Lexau, C., Reingold, A., Lefkowitz, L., Cieslak, P.R., Cetron, M., Zell, E.R., Jorgensen, J.H., Schuchat, A. (2000) Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N. Engl. J. Med 343, 19171924.
  • [201]
    Nelson, D., Loomis, L., Fischetti, V.A. (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98, 41074112.
  • [202]
    Loeffler, J.M., Nelson, D., Fischetti, V.A. (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294, 21702172.
  • [203]
    Jado, I., López, R., García, E., Fenoll, A., Casal, J., García, P. (2003) Phage lytic enzymes as therapy of antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J. Antimicrob. Chemother 52, 967973.
  • [204]
    Moore, R.A., Wiffen, P.J., Lipsky, B.A. Are the pneumococcal polysaccharide vaccines effective. Meta-analysis of the prospective trials. BMC Fam. Pract. 1, 2000. http://biomedcentral.com/1471-2296/1471/1471
  • [205]
    Tan, T.Q. (2000) Pneumococcal conjugate vaccines – implications for community antibiotic prescribing. Curr. Opin. Microbiol 3, 502507.
  • [206]
    Mbelle, N., Huebner, R.E., Wasas, A.D., Kimura, A., Chang, I., Klugman, K.P. (1999) Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis 180, 11711176.
  • [207]
    Spoulou, V., Gilks, C.F., Ioannidis, J.P. (2002) Protein conjugate pneumococcal vaccines. Brit. Med. J 321, 750751.
  • [208]
    McEllistrem, M.C., Adams, J., Mason, E.O., Wald, E.R. (2004) Epidemiology of acute otitis media caused by Streptococcus pneumoniae before and after licensure of the 7-valent pneumococcal protein conjugate vaccine. J. Infect. Dis 188, 16791684.
  • [209]
    Dagan, R., Givon-Lavi, N., Zamir, O., Sikuler-Cohen, M., Guy, L., Janco, J., Yagupsky, P., Fraser, D. (2002) Reduction of nasopharyngeal carriage of Streptococcus pneumoniae after administration of a 9-valent pneumococcal conjugate vaccine to toddlers attending day care-centers. J. Infect. Dis 185, 927936.
  • [210]
    Dagan, R., Givon-Lavi, N., Fraser, D. (2003) Effect of a nonavalent conjugate vaccine on carriage of antibiotic-resistant Streptococcus pneumoniae in day-care centers. Pediatr. Infect. Dis 2003, 532540.
  • [211]
    Briles, D.E., Paton, J.C., Swiatlo, E., Nahm, M.H. (2000) Pneumococcal vaccines. In: Gram-Positive Pathogens (Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A., Rood, J.I., Eds.), pp.244–250 ASM Press, Washington, DC.
  • [212]
    Swiatlo, E., Ware, D. (2003) Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS Immunol. Med. Microbiol 38, 17.
  • [213]
    Rigden, D.J., Galperin, M.Y., Jedrzejas, M.J. (2003) Analysis of structure and function of putative surface-exposed proteins encoded in the Streptococcus pneumoniae genome: a bioinformatics-based approach to vaccine and drug design. Crit. Rev. Biochem. Mol. Biol 38, 143168.
  • [214]
    Ogunniyi, A.D., Folland, R., Briles, D.E., Hollingshead, S.K., Paton, J.C. (2000) Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect. Immun 68, 30283033.
  • [215]
    Wizemann, T.M., Heinrichs, J.H., Adamou, J.E., Erwin, A.L., Kunsch, C., Choi, G.H., Barash, S.C., Rosen, C.A., Masure, H.R., Tuomanen, E., Gayle, A., Brewah, Y.A., Walsh, W., Barren, P., Lathigra, R., Hanson, M., Langermann, S., Johnson, S., Koenig, S. (2001) Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immun 69, 15931598.
  • [216]
    Parsek, M.R. (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol 57, 677701.
  • [217]
    Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., Handley, P.S. (2003) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11, 94100.
  • [218]
    Weiser, J.N., Bae, D., Fasching, C., Scamurra, R.W., Ratner, A.J., Janoff, E.N. (2003) Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100, 42154220.
  • [219]
    Dopazo, J., Mendoza, A., Herrero, J., Caldara, F., Humbert, Y., Friedli, L., Guerrier, M., Grand-Schenk, E., Gandin, C., De Francesco, M., Polissi, A., Buell, G., Feger, G., García, E., Peitsch, M., García-Bustos, J.F. (2001) Annotated draft genomic sequence from a Streptococcus pneumoniae type 19F clinical isolate. Microb. Drug Resist 7, 99125.
  • [220]
    Ingrey, K.T., Ren, J., Prescott, J.F. (2003) A fluoroquinolone induces a novel mitogen-encoding bacteriophage in Streptococcus canis. Infect. Immun 71, 30283033.
  • [221]
    Romero, A., López, R., García, P. (1990) Characterization of the pneumococcal bacteriophage HB-3 amidase: cloning and expression in Escherichia coli. J. Virol 64, 137142.
  • [222]
    Levin, B.R., Bull, J.J. (1994) Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol 2, 7681.
  • [223]
    Romero, A., López, R., García, P. (1992) The insertion site of the temperate phage HB-746 is located near the phage remnant in the pneumococcal host chromosome. J. Virol 66, 28602864.
  • [224]
    Webb, J.S., Thompson, L.S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M., Kjelleberg, S. (2003) Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol 185, 45854592.