SEARCH

SEARCH BY CITATION

References

  • [1]
    Pastink, A., Lohman, P.H.M. (1999) Repair and consequences of double-strand breaks in DNA. Mutat. Res. Fundam. Mol. Mech. Mut. 428, 141156.
  • [2]
    Pastink, A., Eeken, J.C.J., Lohman, P.H.M. (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat. Res. Fundam. Mol. Mech. Mut. 480, 3750.
  • [3]
    Van den Bosch, M., Lohman, P.H.M., Pastink, A. (2002) DNA double-strand break repair by homologous recombination. Biol. Chem. 383, 873892.
  • [4]
    Valerie, K., Povirk, L.F. (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22, 57925812.
  • [5]
    West, S.C. (2003) Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell. Biol. 4, 435445.
  • [6]
    Dudáš, A., Chovanec, M. (2004) DNA double-strand break repair by homologous recombination. Mutat. Res.-Rev. Mutat. Res. 566, 131167.
  • [7]
    Critchlow, S.E., Jackson, S.P. (1998) DNA-end-joining: from yeast to man. Trends Biochem. Sci. 23, 394398.
  • [8]
    Jeggo, P.A. DNA breakage and repair Hall, J.C., Friedmann, T., Dunlap, J.C., Giannelli, F., Eds., Advances in Genetics. Vol. 38, 1998. Academic Press Inc, San Diego. 185–218
  • [9]
    Jeggo, P.A. (1998) Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat. Res. 150, S80S91.
  • [10]
    Lieber, M.R. (1999) The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 4, 7785.
  • [11]
    Lees-Miller, S.P., Meek, K. (2003) Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85, 11611173.
  • [12]
    Lieber, M.R., Ma, Y.M., Pannicke, U., Schwarz, K. (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell. Biol. 4, 712720.
  • [13]
    Schwarz, K., Ma, Y., Pannicke, U., Lieber, M.R. (2003) Human severe combined immune deficiency and DNA repair. Bioessays 25, 10611070.
  • [14]
    Dudášová, Z., Chovanec, M. (2003) Artemis, a novel guardian of the genome. Neoplasma 50, 311318.
  • [15]
    Jeggo, P., O'Neill, P. (2002) The Greek Goddess, Artemis, reveals the secrets of her cleavage. DNA Repair 1, 771777.
  • [16]
    Lee, S.H., Kim, C.H. (2002) DNA-dependent protein kinase complex: a multifunctional protein in DNA repair and damage checkpoint. Mol. Cells 13, 159166.
  • [17]
    Smith, G.C.M., Jackson, S.P. (1999) The DNA-dependent protein kinase. Gene Develop. 13, 916934.
  • [18]
    Jeggo, P.A. (1997) DNA-PK: at the cross-roads of biochemistry and genetics. Mutat. Res. DNA Repair 384, 114.
  • [19]
    Tuteja, R., Tuteja, N. (2000) Ku autoantigen: a multifunctional DNA-binding protein. Crit. Rev. Biochem. Molec. Biol. 35, 133.
  • [20]
    Koike, M. (2002) Dimerization, translocation and localization of Ku70 and Ku80 proteins. J. Radiat. Res. 43, 223236.
  • [21]
    Jin, S.F., Inoue, S., Weaver, D.T. (1997) Functions of the DNA dependent protein kinase. Cancer Surv. 29, 221261.
  • [22]
    Dynan, W.S., Yoo, S. (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 26, 15511559.
  • [23]
    Muller, C., Calsou, P., Frit, P., Salles, B. (1999) Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie 81, 117125.
  • [24]
    Ma, Y., Pannicke, U., Schwarz, K., Lieber, M.R. (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781794.
  • [25]
    Junop, M.S., Modesti, M., Guarne, A., Ghirlando, R., Gellert, M., Yang, W. (2000) Crystal structure of the Xrcc4 DNA repair protein and implications for end joining. EMBO J. 19, 59625970.
  • [26]
    Sibanda, B.L., Critchlow, S.E., Begun, J., Pei, X.Y., Jackson, S.P., Blundell, T.L., Pellegrini, L. (2001) Crystal structure of an Xrcc4-DNA ligase IV complex. Nat. Struct. Biol. 8, 10151019.
  • [27]
    Modesti, M., Junop, M.S., Ghirlando, R., Van De, R.M., Gellert, M., Yang, W., Kanaar, R. (2003) Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive. J. Mol. Biol. 334, 215228.
  • [28]
    Timson, D.J., Singleton, M.R., Wigley, D.B. (2000) DNA ligases in the repair and replication of DNA. Mutat. Res. DNA Repair 460, 301318.
  • [29]
    Martin, I.V., MacNeill, S.A. ATP-dependent DNA ligases. Genome Biol. 3, 2002. REVIEWS3005
  • [30]
    Weterings, E., Verkaik, N.S., Bruggenwirth, H.T., Hoeijmakers, J.H., Vangent, D.C. (2003) The role of DNA dependent protein kinase in synapsis of DNA ends. Nucleic Acids Res. 31, 72387246.
  • [31]
    Mahajan, K.N., McElhinny, S.A.N., Mitchell, B.S., Ramsden, D.A. (2002) Association of DNA polymerase μ(pol μ) with Ku and ligase IV: Role for pol μ in end-joining double-strand break repair. Mol. Cell. Biol. 22, 51945202.
  • [32]
    Ruiz, J.F., Dominguez, O., Delera, T.L., GarciaDiaz, M., Bernad, A., Blanco, L. (2001) DNA polymerase μ, a candidate hypermutase. Phil. Trans. Roy. Soc. London B 356, 99109.
  • [33]
    Bebenek, K., Garcia-Diaz, M., Blanco, L., Kunkel, T.A. (2003) The frameshift infidelity of human DNA polymerase lambda. Implications for function. J. Biol. Chem. 278, 3468534690.
  • [34]
    Lee, J.W., Blanco, L., Zhou, T., Garcia-Diaz, M., Bebenek, K., Kunkel, T.A., Wang, Z., Povirk, L.F. (2004) Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J. Biol. Chem. 279, 805811.
  • [35]
    Feldmann, H., Winnacker, E.L. (1993) A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem. 268, 1289512900.
  • [36]
    Boulton, S.J., Jackson, S.P. (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 50935103.
  • [37]
    Boulton, S.J., Jackson, S.P. (1996) Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double-strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 46394648.
  • [38]
    Mages, G.J., Feldmann, H.M., Winnacker, E.L. (1996) Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J. Biol. Chem. 271, 79107915.
  • [39]
    Feldmann, H., Driller, L., Meier, B., Mages, G., Kellermann, J., Winnacker, E.L. (1996) HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J. Biol. Chem. 271, 2776527769.
  • [40]
    Schär, P., Herrmann, G., Daly, G., Lindahl, T. (1997) A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Gene Develop. 11, 19121924.
  • [41]
    Teo, S.H., Jackson, S.P. (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 16, 47884795.
  • [42]
    Wilson, T.E., Grawunder, U., Lieber, M.R. (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495498.
  • [43]
    Herrmann, G., Lindahl, T., Schär, P. (1998) Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17, 41884198.
  • [44]
    Ramos, W., Liu, G., Giroux, C.N., Tomkinson, A.E. (1998) Biochemical and genetic characterization of the DNA ligase encoded by Saccharomyces cerevisiae open reading frame YOR005C, a homolog of mammalian DNA ligase IV. Nucleic Acids Res. 26, 56765683.
  • [45]
    Aravind, L., Koonin, E.V. (2001) Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 11, 13651374.
  • [46]
    Doherty, A.J., Jackson, S.P., Weller, G.R. (2001) Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett. 500, 186188.
  • [47]
    Manolis, K.G., Nimmo, E.R., Hartsuiker, E., Carr, A.M., Jeggo, P.A., Allshire, R.C. (2001) Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J. 20, 210221.
  • [48]
    Weller, G.R., Doherty, A.J. (2001) A family of DNA repair ligases in bacteria. FEBS Lett. 505, 340342.
  • [49]
    Weller, G.R., Kysela, B., Roy, R., Tonkin, L.M., Scanlan, E., Della, M., Devine, S.K., Day, J.P., Wilkinson, A., Di Fagagna, F.D., Devine, K.M., Bowater, R.P., Jeggo, P.A., Jackson, S.P., Doherty, A.J. (2002) Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 16861689.
  • [50]
    Mimori, T., Akizuki, M., Yamagata, H., Inada, S., Yoshida, S., Homma, M. (1981) Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J. Clin. Invest. 68, 611620.
  • [51]
    Featherstone, C., Jackson, S.P. (1999) Ku, a DNA repair protein with multiple cellular functions. Mutat. Res. DNA Repair 434, 315.
  • [52]
    Arosio, D., Cui, S., Ortega, C., Chovanec, M., Di Marco, S., Baldini, G., Falaschi, A., Vindigni, A. (2002) Studies on the mode of Ku interaction with DNA. J. Biol. Chem. 277, 97419748.
  • [53]
    Ramsden, D.A., Gellert, M. (1998) Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J. 17, 609614.
  • [54]
    Feldmann, E., Schmiemann, V., Goedecke, W., Reichenberger, S., Pfeiffer, P. (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res. 28, 25852596.
  • [55]
    McElhinny, S.A.N., Snowden, C.M., McCarville, J., Ramsden, D.A. (2000) Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20, 29963003.
  • [56]
    Kysela, B., Doherty, A.J., Chovanec, M., Stiff, T., Ameer-Beg, S.M., Vojnovic, B., Girard, P.M., Jeggo, P.A. (2003) Ku stimulation of DNA ligase IV-dependent ligation requires inward movement along the DNA molecule. J. Biol. Chem. 278, 2246622474.
  • [57]
    Bertuch, A.A., Lundblad, V. (2003) The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell. Biol. 23, 82028215.
  • [58]
    Milne, G.T., Jin, S., Shannon, K.B., Weaver, D.T. (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 41894198.
  • [59]
    Siede, W., Friedl, A.A., Dianova, I., Eckardtschupp, F., Friedberg, E.C. (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142, 91102.
  • [60]
    Keszenman, D., Salvo, V.A., Nunes, E. (1992) Effect of bleomycin on growth kinetics and survival of Saccharomyces cerevisiae: a model of repair pathways. J. Bacteriol. 174, 31223125.
  • [61]
    Barnes, G., Rio, D. (1997) DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 867872.
  • [62]
    Porter, S.E., Greenwell, P.W., Ritchie, K.B., Petes, T.D. (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24, 582585.
  • [63]
    Featherstone, C., Jackson, S.P. (1998) DNA repair: The Nijmegen breakage syndrome protein. Curr. Biol. 8, R622R625.
  • [64]
    Moreau, S., Ferguson, J.R., Symington, L.S. (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556566.
  • [65]
    Boulton, S.J., Jackson, S.P. (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 18191828.
  • [66]
    Gottschling, D.E., Aparicio, O.M., Billington, B.L., Zakian, V.A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751762.
  • [67]
    Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349352.
  • [68]
    Stone, E.M., Pillus, L. (1998) Silent chromatin in yeast: an orchestrated medley featuring Sir3p. Bioessays 20, 3040.
  • [69]
    Laroche, T., Martin, S.G., Gotta, M., Gorham, H.C., Pryde, F.E., Louis, E.J., Gasser, S.M. (1998) Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653656.
  • [70]
    Nugent, C.I., Bosco, G., Ross, L.O., Evans, S.K., Salinger, A.P., Moore, J.K., Haber, J.E., Lundblad, V. (1998) Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657660.
  • [71]
    Gravel, S., Larrivee, M., Labrecque, P., Wellinger, R.J. (1998) Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741744.
  • [72]
    Driller, L., Wellinger, R.J., Larrivee, M., Kremmer, E., Jaklin, S., Feldmann, H.M. (2000) A short C-terminal domain of Yku70p is essential for telomere maintenance. J. Biol. Chem. 275, 2492124927.
  • [73]
    Tsukamoto, Y., Kato, J., Ikeda, H. (1997) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388, 900903.
  • [74]
    Roy, R., Meier, B., McAinsh, A.D., Feldmann, H.M., Jackson, S.P. (2004) Separation-of-function mutants of yeast Ku80 reveal a Yku80p–Sir4p interaction involved in telomeric silencing. J. Biol. Chem. 279, 8694.
  • [75]
    Moazed, D., Kistler, A., Axelrod, A., Rine, J., Johnson, A.D. (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl. Acad. Sci. USA 94, 21862191.
  • [76]
    Kuhn, A., Gottlieb, T.M., Jackson, S.P., Grummt, I. (1995) DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Gene Develop. 9, 193203.
  • [77]
    Labhart, P. (1995) DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc. Natl. Acad. Sci. USA 92, 29342938.
  • [78]
    Martin, S.G., Laroche, T., Suka, N., Grunstein, M., Gasser, S.M. (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621633.
  • [79]
    Lewis, L.K., Resnick, M.A. (2000) Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat. Res. Fundam. Mol. Mech. Mut. 451, 7189.
  • [80]
    Lee, S.E., Moore, J.K., Holmes, A., Umezu, K., Kolodner, R.D., Haber, J.E. (1998) Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399409.
  • [81]
    Walker, J.R., Corpina, R.A., Goldberg, J. (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607614.
  • [82]
    Greenwell, P.W., Kronmal, S.L., Porter, S.E., Gassenhuber, J., Obermaier, B., Petes, T.D. (1995) TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82, 823829.
  • [83]
    Jackson, S.P. DNA damage detection by DNA dependent protein kinase and related enzymes. Cancer Surv. 1996. 28261–28279
  • [84]
    Moore, J.K., Haber, J.E. (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 21642173.
  • [85]
    Tsukamoto, Y., Kato, J., Ikeda, H. (1996) Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 142, 383391.
  • [86]
    Chen, L., Trujillo, K., Ramos, W., Sung, P., Tomkinson, A.E. (2001) Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdfl/Hdf2 complexes. Mol. Cell 8, 11051115.
  • [87]
    Kupiec, M., Simchen, G. (1984) Cloning and mapping of the RAD50 gene of Saccharomyces cerevisiae. Mol. Gen. Genet. 193, 525531.
  • [88]
    Alani, E., Subbiah, S., Kleckner, N. (1989) The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine nucleotide-binding domain and two large heptad-repeat regions. Genetics 122, 4757.
  • [89]
    Ivanov, E.L., Sugawara, N., White, C.I., Fabre, F., Haber, J.E. (1994) Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 34143425.
  • [90]
    Kozhin, S.A., Chepurnaya, O.V., Korolev, V.G. (1995) The RAD58 (XRS4) gene: map position on the right arm of chromosome XIII. Yeast 11, 12111213.
  • [91]
    Petrini, J.H., Walsh, M.E., DiMare, C., Chen, X.N., Korenberg, J.R., Weaver, D.T. (1995) Isolation and characterization of the human MRE11 homologue. Genomics 29, 8086.
  • [92]
    Dolganov, G.M., Maser, R.S., Novikov, A., Tosto, L., Chong, S., Bressan, D.A., Petrini, J.H.J. (1996) Human Rad50 is physically associated with human Mre11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16, 48324841.
  • [93]
    Carney, J.P., Maser, R.S., Olivares, H., Davis, E.M., Lebeau, M., Yates, J.R., Hays, L., Morgan, W.F., Petrini, J.H.J. (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477486.
  • [94]
    Matsuura, S., Tauchi, H., Nakamura, A., Kondo, N., Sakamoto, S., Endo, S., Smeets, D., Solder, B., Belohradsky, B.H., Der, K.V., Oshimura, M., Isomura, M., Nakamura, Y., Komatsu, K. (1998) Positional cloning of the gene for Nijmegen breakage syndrome. Nat. Genet. 19, 179181.
  • [95]
    Varon, R., Vissinga, C., Platzer, M., Cerosaletti, K.M., Chrzanowska, K.H., Saar, K., Beckmann, G., Seemanova, E., Cooper, P.R., Nowak, N.J., Stumm, M., Weemaes, C.M.R., Gatti, R.A., Wilson, R.K., Digweed, M., Rosenthal, A., Sperling, K., Concannon, P., Reis, A. (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467476.
  • [96]
    Furuse, M., Nagase, Y., Tsubouchi, H., Murakamimurofushi, K., Shibata, T., Ohta, K. (1998) Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17, 64126425.
  • [97]
    Tsubouchi, H., Ogawa, H. (1998) A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 18, 260268.
  • [98]
    Usui, T., Ohta, T., Oshiumi, H., Tomizawa, J., Ogawa, H., Ogawa, T. (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95, 705716.
  • [99]
    Trujillo, K.M., Sung, P. (2001) DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50 center dot Mre11 complex. J. Biol. Chem. 276, 3545835464.
  • [100]
    Moncalian, G., Lengsfeld, B., Bhaskara, V., Hopfner, K.P., Karcher, A., Alden, E., Tainer, J.A., Paull, T.T. (2004) The rad50 signature motif: essential to ATP binding and biological function. J. Mol. Biol. 335, 937951.
  • [101]
    Raymond, W.E., Kleckner, N. (1993) RAD50 protein of S. cerevisiae exhibits ATP-dependent DNA binding. Nucleic Acids Res. 21, 38513856.
  • [102]
    Trujillo, K.M., Roh, D.H., Chen, L., Van Komen, S., Tomkinson, A., Sung, P. (2003) Yeast Xrs2 binds DNA and helps target Rad50 and Mre11 to DNA ends. J. Biol. Chem. 278, 4895748964.
  • [103]
    Hopfner, K.P., Karcher, A., Shin, D.S., Craig, L., Arthur, L.M., Carney, J.P., Tainer, J.A. (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789800.
  • [104]
    Hopfner, K.P., Karcher, A., Shin, D., Fairley, C., Tainer, J.A., Carney, J.P. (2000) Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine. J. Bacteriol. 182, 60366041.
  • [105]
    Hopfner, K.P., Karcher, A., Craig, L., Woo, T.T., Carney, J.P., Tainer, J.A. (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105, 473485.
  • [106]
    Hopfner, K.P., Craig, L., Moncalian, G., Zinkel, R.A., Usui, T., Owen, B.A.L., Karcher, A., Henderson, B., Bodmer, J.L., McMurray, C.T., Carney, J.P., Petrini, J.H.J., Tainer, J.A. (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418, 562566.
  • [107]
    Hopfner, K.P., Putnam, C.D., Tainer, J.A. (2002) DNA double-strand break repair from head to tail. Curr. Opin. Struct. Biol. 12, 115122.
  • [108]
    Connelly, J.C., Leach, D.R.F. (2002) Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex. Trends Biochem. Sci. 27, 410418.
  • [109]
    Schiestl, R.H., Zhu, J., Petes, T.D. (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 44934500.
  • [110]
    Tsukamoto, Y., Kato, J., Ikeda, H. (1997) Budding yeast Rad50, Mre11, Xrs2, and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid. Mol. Gen. Genet. 255, 543547.
  • [111]
    Lewis, L.K., Karthikeyan, G., Westmoreland, J.W., Resnick, M.A. (2002) Differential suppression of DNA repair deficiencies of yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (The RNA component of telomerase). Genetics 160, 4962.
  • [112]
    Alani, E., Padmore, R., Kleckner, N. (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419436.
  • [113]
    Ivanov, E.L., Korolev, V.G., Fabre, F. (1992) XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132, 651664.
  • [114]
    Kironmai, K.M., Muniyappa, K. (1997) Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2, 443455.
  • [115]
    Bressan, D.A., Baxter, B.K., Petrini, J.H.J. (1999) The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 76817687.
  • [116]
    Chen, C., Kolodner, R.D. (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23, 8185.
  • [117]
    D'Amours, D., Jackson, S.P. (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell. Biol. 3, 317327.
  • [118]
    Grenon, M., Gilbert, C., Lowndes, N.F. (2001) Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3, 844847.
  • [119]
    Van den Bosch, M., Bree, R.T., Lowndes, N.F. (2003) The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep. 4, 844849.
  • [120]
    Wilson, T.E., Lieber, M.R. (1999) Efficient processing of DNA ends during yeast nonhomologous end joining – evidence for a DNA polymerase beta (POL4)-dependent pathway. J. Biol. Chem. 274, 2359923609.
  • [121]
    Tseng, H.M., Tomkinson, A.E. (2002) A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining. J. Biol. Chem. 277, 4563045637.
  • [122]
    Prasad, R., Widen, S.G., Singhal, R.K., Watkins, J., Prakash, L., Wilson, S.H. (1993) Yeast open reading frame YCR14C encodes a DNA beta-polymerase-like enzyme. Nucleic Acids Res. 21, 53015307.
  • [123]
    McInnis, M., O'Neill, G., Fossum, K., Reagan, M.S. (2002) Epistatic analysis of the roles of the RAD27 and POL4 gene products in DNA base excision repair in S. cerevisiae. DNA Repair 1, 311315.
  • [124]
    Leem, S.H., Ropp, P.A., Sugino, A. (1994) The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double-strand break DNA repair. Nucleic Acids Res. 22, 30113017.
  • [125]
    Harrington, J.J., Lieber, M.R. (1994) Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Gene Develop. 8, 13441355.
  • [126]
    Hansen, R.J., Friedberg, E.C., Reagan, M.S. (2000) Sensitivity of a S. cerevisiae RAD27 deletion mutant to DNA-damaging agents and in vivo complementation by the human FEN-1 gene. Mutat. Res. DNA Repair 461, 243248.
  • [127]
    Reagan, M.S., Pittenger, C., Siede, W., Friedberg, E.C. (1995) Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J. Bacteriol. 177, 364371.
  • [128]
    Symington, L.S. (1998) Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res. 26, 55895595.
  • [129]
    Wu, X.H., Wang, Z.G. (1999) Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA. Nucleic Acids Res. 27, 956962.
  • [130]
    Tishkoff, D.X., Filosi, N., Gaida, G.M., Kolodner, R.D. (1997) A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88, 253263.
  • [131]
    Debrauwere, H., Loeillet, S., Lin, W., Lopes, J., Nicolas, A. (2001) Links between replication and recombination in Saccharomyces cerevisiae: A hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Nat. Acad. Sci. USA 98, 82638269.
  • [132]
    Holmes, A.M., Haber, J.E. (1999) Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96, 415424.
  • [133]
    Schweitzer, J.K., Livingston, D.M. (1998) Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7, 6974.
  • [134]
    Freudenreich, C.H., Kantrow, S.M., Zakian, V.A. (1998) Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853856.
  • [135]
    Kokoska, R.J., Stefanovic, L., Tran, H.T., Resnick, M.A., Gordenin, D.A., Petes, T.D. (1998) Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). Mol. Cell. Biol. 18, 27792788.
  • [136]
    Maurer, D.J., O'Callaghan, B.L., Livingston, D.M. (1998) Mapping the polarity of changes that occur in interrupted CAG repeat tracts in yeast. Mol. Cell. Biol. 18, 45974604.
  • [137]
    Richard, G.F., Dujon, B., Haber, J.E. (1999) Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol. Gen. Genet. 261, 871882.
  • [138]
    Negritto, M.C., Qiu, J.Z., Ratay, D.O., Shen, B.H., Bailis, A.M. (2001) Novel function of Rad27 (FEN-1) in restricting short-sequence recombination. Mol. Cell. Biol. 21, 23492358.
  • [139]
    Xie, Y., Liu, Y., Argueso, J.L., Henricksen, L.A., Kao, H.I., Bambara, R.A., Alani, E. (2001) Identification of rad27 mutations that confer differential defects in mutation avoidance, repeat tract instability, and flap cleavage. Mol. Cell. Biol. 21, 48894899.
  • [140]
    Callahan, J.L., Andrews, K.J., Zakian, V.A., Freudenreich, C.H. (2003) Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol. Cell. Biol. 23, 78497860.
  • [141]
    Parenteau, J., Wellinger, R.J. (1999) Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol. Cell. Biol. 19, 41434152.
  • [142]
    Sundararajan, A., Lee, B.S., Garfinkel, D.J. (2003) The Rad27 (Fen-1) nuclease inhibits Ty1 mobility in Saccharomyces cerevisiae. Genetics 163, 5567.
  • [143]
    Hoopes, L.L.M., Budd, M., Choe, W., Tao, W.T., Campbell, J.L. (2002) Mutations in DNA replication genes reduce yeast life span. Mol. Cell. Biol. 22, 41364146.
  • [144]
    Bambara, R.A., Murante, R.S., Henricksen, L.A. (1997) Enzymes and reactions at the eukaryotic DNA replication fork. J. Biol. Chem. 272, 46474650.
  • [145]
    Waga, S., Stillman, B. (1998) The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721751.
  • [146]
    Wu, X.T., Wilson, T.E., Lieber, M.R. (1999) A role for FEN-1 in nonhomologous DNA end joining: The order of strand annealing and nucleolytic processing events. Proc. Nat. Acad. Sci. USA 96, 13031308.
  • [147]
    Teo, S.H., Jackson, S.P. (2000) Lif1p targets the DNA ligase Lig4p to sites of DNA double-strand breaks. Curr. Biol. 10, 165168.
  • [148]
    Grawunder, U., Wilm, M., Wu, X.T., Kulesza, P., Wilson, T.E., Mann, M., Lieber, M.R. (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492495.
  • [149]
    Critchlow, S.E., Bowater, R.P., Jackson, S.P. (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr. Biol. 7, 588598.
  • [150]
    Grawunder, U., Zimmer, D., Lieber, M.R. (1998) DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains. Curr. Biol. 8, 873876.
  • [151]
    Grawunder, U., Zimmer, D., Kulesza, P., Lieber, M.R. (1998) Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J. Biol. Chem. 273, 2470824714.
  • [152]
    Karathanasis, E., Wilson, T.E. (2002) Enhancement of Saccharomyces cerevisiae end joining efficiency by cell growth stage but not by impairment of recombination. Genetics 161, 10151027.
  • [153]
    Åström, S.U., Okamura, S.M., Rine, J. Yeast cell-type regulation of DNA repair. Nature. 397, 1999. 310
  • [154]
    Frank-Vaillant, M., Marcand, S. (2001) NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the Ligase IV pathway. Gene Develop. 15, 30053012.
  • [155]
    Kegel, A., Sjöstrand, J.O.O., Åström, S.U. (2001) Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr. Biol. 11, 16111617.
  • [156]
    Ooi, S.L., Shoemaker, D.D., Boeke, J.D. (2001) A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 25522556.
  • [157]
    Valencia, M., Bentele, M., Vaze, M.B., Herrmann, G., Kraus, E., Lee, S.E., Schär, P., Haber, J.E. (2001) NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 414, 666669.
  • [158]
    Lee, S.E., Paques, F., Sylvan, J., Haber, J.E. (1999) Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767770.
  • [159]
    Cliften, P., Sudarsanam, P., Desikan, A., Fulton, L., Fulton, B., Majors, J., Waterston, R., Cohen, B.A., Johnston, M. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 7176.
  • [160]
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 45694574.
  • [161]
    Wilson, T.E. (2002) A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162, 677688.
  • [162]
    Liti, G., Louis, E.J. (2003) NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell 11, 13731378.
  • [163]
    Williams, B., Lustig, A.J. (2003) The paradoxical relationship between NHEJ and telomeric fusion. Mol. Cell 11, 11251126.
  • [164]
    Paques, F., Haber, J.E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349404.
  • [165]
    Jackson, S.P. (2001) Detecting, signalling and repairing DNA double-strand breaks. Biochem. Soc. Trans. 29, 655661.
  • [166]
    Symington, L.S. (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630670.
  • [167]
    Krejči, L., Chen, L., Van Komen, S., Sung, P., Tomkinson, A. (2003) Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog. Nucleic Acid Res. Mol. Biol. 74, 159201.
  • [168]
    Nickoloff, J.A., Hoekstra, M.F. (1998) Double-strand break and recombinational repair in Saccharomyces cerevisiae. In: (Nickoloff, J.A., Hoekstra, M.F., Eds.). Vol. 1., pp. 335–362. Human press, Inc., Totowa, NJ
  • [169]
    Ivanov, E.L., Sugawara, N., Fishmanlobell, J., Haber, J.E. (1996) Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142, 693704.
  • [170]
    Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S., Ogawa, T. (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3, 145156.
  • [171]
    Sugawara, N., Ira, G., Haber, J.E. (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20, 53005309.
  • [172]
    Fairhead, C., Llorente, B., Denis, F., Soler, M., Dujon, B. (1996) New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using ‘split-marker’ recombination. Yeast 12, 14391457.
  • [173]
    Lewis, L.K., Kirchner, J.M., Resnick, M.A. (1998) Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after Eco RI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 18, 18911902.
  • [174]
    Takata, M., Sasaki, M.S., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., Yamaguchiiwai, Y., Shinohara, A., Takeda, S. (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 54975508.
  • [175]
    Heidenreich, E., Novotny, R., Kneidinger, B., Holzmann, V., Wintersberger, U. (2003) Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. 22, 22742283.
  • [176]
    Hegde, V., Klein, H. (2000) Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast. Nucleic Acids Res. 28, 27792783.
  • [177]
    Clikeman, J.A., Khalsa, G.J., Barton, S.L., Nickoloff, J.A. (2001) Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics 157, 579589.
  • [178]
    Frank-Vaillant, M., Marcand, S. (2002) Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol. Cell 10, 11891199.
  • [179]
    White, C.I., Haber, J.E. (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9, 663673.
  • [180]
    Sugawara, N., Haber, J.E. (1992) Characterization of double-strand break-induced recombination: Homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12, 563575.
  • [181]
    Lee, S.E., Pellicioli, A., Demeter, J., Vaze, M.P., Gasch, A.P., Malkova, A., Brown, P.O., Botstein, D., Stearns, T., Foiani, M., Haber, J.E. (2000) Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae. Cold Spring Harbor Symp. 65, 303314.
  • [182]
    Smith, J., Baldeyron, C., DeOliveira, I., SalaTrepat, M., Papadopoulo, D. (2001) The influence of DNA double-strand break structure on end-joining in human cells. Nucleic Acid Res. 29, 47834792.
  • [183]
    Goedecke, W., Eijpe, M., Offenberg, H.H., Vanaalderen, M., Heyting, C. (1999) Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat. Genet. 23, 194198.
  • [184]
    Singleton, B.K., Torres-Arzayus, M.I., Rottinghaus, S.T., Taccioli, G.E., Jeggo, P.A. (1999) The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol. Cell. Biol. 19, 32673277.
  • [185]
    Gell, D., Jackson, S.P. (1999) Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res. 27, 34943502.
  • [186]
    Hartley, K.O., Gell, D., Smith, G.C., Zhang, H., Divecha, N., Connelly, M.A., Admon, A., Lees-Miller, S.P., Anderson, C.W., Jackson, S.P. (1995) DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849856.
  • [187]
    Poltoratsky, V.P., Shi, X., York, J.D., Lieber, M.R., Carter, T.H. (1995) Human DNA-activated protein kinase (DNA-PK) is homologous to phosphatidylinositol kinases. J. Immunol. 155, 45294533.
  • [188]
    Araki, R., Fujimori, A., Hamatani, K., Mita, K., Saito, T., Mori, M., Fukumura, R., Morimyo, M., Muto, M., Itoh, M., Tatsumi, K., Abe, M. (1997) Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice. Proc. Natl. Acad. Sci. USA 94, 24382443.
  • [189]
    Shin, E.K., Perryman, L.E., Meek, K. (1997) A kinase-negative mutation of DNA-PK(CS) in equine SCID results in defective coding and signal joint formation. J. Immunol. 158, 35653569.
  • [190]
    Labhart, P. (1997) mRNA encoding the catalytic subunit of DNA-dependent protein kinase is widely expressed in Xenopus cells. Gene 203, 235240.
  • [191]
    Moshous, D., Callebaut, I., De Chasseval, R., Corneo, B., Cavazzana-Calvo, M., le Deist, F., Tezcan, I., Sanal, O., Bertrand, Y., Philippe, N., Fischer, A., Devillartay, J.P. (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105, 177186.
  • [192]
    Dronkert, M.L.G., Dewit, J., Boeve, M., Vasconcelos, M.L., Vansteeg, H., Tan, T.L.R., Hoeijmakers, J.H.J., Kanaar, R. (2000) Disruption of mouse SNM1 causes increased sensitivity to the DNA interstrand cross-linking agent mitomycin C. Mol. Cell. Biol. 20, 45534561.
  • [193]
    Yu, J., Marshall, K., Yamaguchi, M., Haber, J.E., Weil, C.F. (2004) Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 13511364.
  • [194]
    Li, X., Moses, R.E. (2003) The beta-lactamase motif in Snm1 is required for repair of DNA double-strand breaks caused by interstrand crosslinks in S. cerevisiae. DNA Repair 2, 121129.
  • [195]
    Lobachev, K.S., Gordenin, D.A., Resnick, M.A. (2002) The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108, 183193.
  • [196]
    Jazayeri, A., Jackson, S.P. Screening the yeast genome for new DNA-repair genes. Genome Biol. 3, 2002. REVIEWS1009
  • [197]
    Cao, Q.P., Pitt, S., Leszyk, J., Baril, E.F. (1994) DNA-dependent ATPase from HeLa cells is related to human Ku autoantigen. Biochemistry 33, 85488557.
  • [198]
    Tuteja, N., Tuteja, R., Ochem, A., Taneja, P., Huang, N.W., Simoncsits, A., Susic, S., Rahman, K., Marusic, L., Chen, J. (1994) Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J. 13, 49915001.
  • [199]
    Vishwanatha, J.K., Baril, E.F. (1990) Single-stranded-DNA-dependent ATPase from HeLa cells that stimulates DNA polymerase alpha-primase activity: purification and characterization of the ATPase. Biochemistry 29, 87538759.
  • [200]
    Ochem, A.E., Skopac, D., Costa, M., Rabilloud, T., Vuillard, L., Simoncsits, A., Giacca, M., Falaschi, A. (1997) Functional properties of the separate subunits of human DNA helicase II/Ku autoantigen. J. Biol. Chem. 272, 2991929926.
  • [201]
    Hsu, H.L., Yannone, S.M., Chen, D.J. (2002) Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair 1, 225235.
  • [202]
    Calsou, P., Delteil, C., Frit, P., Droulet, J., Salles, B. (2003) Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J. Mol. Biol. 326, 93103.
  • [203]
    Yaneva, M., Kowalewski, T., Lieber, M.R. (1997) Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies. EMBO J. 16, 50985112.
  • [204]
    Gottlieb, T.M., Jackson, S.P. (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131142.
  • [205]
    Suwa, A., Hirakata, M., Takeda, Y., Jesch, S.A., Mimori, T., Hardin, J.A. (1994) DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. Proc. Natl. Acad. Sci. USA 91, 69046908.
  • [206]
    Jin, S., Weaver, D.T. (1997) Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. EMBO J. 16, 68746885.
  • [207]
    Wang, J., Dong, X., Myung, K., Hendrickson, E.A., Reeves, W.H. (1998) Identification of two domains of the p70 Ku protein mediating dimerization with p80 and DNA binding. J. Biol. Chem. 273, 842848.
  • [208]
    Cary, R.B., Chen, F.Q., Shen, Z.Y., Chen, D.J. (1998) A central region of Ku80 mediates interaction with Ku70 in vivo. Nucleic Acids Res. 26, 974979.
  • [209]
    West, R.B., Yaneva, M., Lieber, M.R. (1998) Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol. Cell. Biol. 18, 59085920.
  • [210]
    Calsou, P., Frit, P., Humbert, O., Muller, C., Chen, D.J., Salles, B. (1999) The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA. J. Biol. Chem. 274, 78487856.
  • [211]
    Blier, P.R., Griffith, A.J., Craft, J., Hardin, J.A. (1993) Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J. Biol. Chem. 268, 75947601.
  • [212]
    Leuther, K.K., Hammarsten, O., Kornberg, R.D., Chu, G. (1999) Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J. 18, 11141123.
  • [213]
    Boskovic, J., Rivera-Calzada, A., Maman, J.D., Chacon, P., Willison, K.R., Pearl, L.H., Llorca, O. (2003) Visualization of DNA-induced conformational changes in the DNA repair kinase DNA-PKcs. EMBO J. 22, 58755882.
  • [214]
    Chan, D.W., Lees-Miller, S.P. (1996) The DNA-dependent protein kinase is inactivated by autophosphorylation of the catalytic subunit. J. Biol. Chem. 271, 89368941.
  • [215]
    Hammarsten, O., Chu, G. (1998) DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc. Natl. Acad. Sci. USA 95, 525530.
  • [216]
    Leber, R., Wise, T.W., Mizuta, R., Meek, K. (1998) The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J. Biol. Chem. 273, 17941801.
  • [217]
    Matsumoto, Y., Suzuki, N., Namba, N., Umeda, N., Ma, X.J., Morita, A., Tomita, M., Enomoto, A., Serizawa, S., Hirano, K., Sakai, K., Yasuda, H., Hosoi, Y. (2000) Cleavage and phosphorylation of XRCC4 protein induced by X-irradiation. FEBS Lett. 478, 6771.
  • [218]
    DeFazio, L.G., Stansel, R.M., Griffith, J.D., Chu, G. (2002) Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J. 21, 31923200.
  • [219]
    Hammarsten, O., DeFazio, L.G., Chu, G. (2000) Activation of DNA-dependent protein kinase by single-stranded DNA ends. J. Biol. Chem. 275, 15411550.
  • [220]
    Soubeyrand, S., Torrance, H., Giffin, W., Gong, W., Schild-Poulter, C., Hache, R.J. (2001) Activation and autoregulation of DNA-PK from structured single-stranded DNA and coding end hairpins. Proc. Natl. Acad. Sci. USA 98, 96059610.
  • [221]
    Chan, D.W., Ye, R., Veillette, C.J., Lees-Miller, S.P. (1999) DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry 38, 18191828.
  • [222]
    Martensson, S., Hammarsten, O. (2002) DNA-dependent protein kinase catalytic subunit. Structural requirements for kinase activation by DNA ends. J. Biol. Chem. 277, 30203029.
  • [223]
    Douglas, P., Sapkota, G.P., Morrice, N., Yu, Y., Goodarzi, A.A., Merkle, D., Meek, K., Alessi, D.R., Lees-Miller, S.P. (2002) Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase. Biochem. J. 368, 243251.
  • [224]
    Chan, D.W., Chen, B.P.C., Prithivirajsingh, S., Kurimasa, A., Story, M.D., Qin, J., Chen, D.J. (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Gene. Develop. 16, 23332338.
  • [225]
    Merkle, D., Douglas, P., Moorhead, G.B., Leonenko, Z., Yu, Y., Cramb, D., Bazett-Jones, D.P., Lees-Miller, S.P. (2002) The DNA-dependent protein kinase interacts with DNA to form a protein-DNA complex that is disrupted by phosphorylation. Biochemistry 41, 1270612714.
  • [226]
    Soubeyrand, S., Pope, L., Pakuts, B., Hache, R.J. (2003) Threonines 2638/2647 in DNA-PK are essential for cellular resistance to ionizing radiation. Cancer Res. 63, 11981201.
  • [227]
    Ding, Q., Reddy, Y.V., Wang, W., Woods, T., Douglas, P., Ramsden, D.A., Lees-Miller, S.P., Meek, K. (2003) Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol. Cell. Biol. 23, 58365848.
  • [228]
    Yu, Y., Wang, W., Ding, Q., Ye, R., Chen, D., Merkle, D., Schriemer, D., Meek, K., Lees-Miller, S.P. (2003) DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination. DNA Repair 2, 12391252.
  • [229]
    Callebaut, I., Moshous, D., Mornon, J.P., Devillartay, J.P. (2002) Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res. 30, 35923601.
  • [230]
    Poinsignon, C., Moshous, D., Callebaut, I., De Chasseval, R., Villey, I., De Villartay, J.P. (2004) The Metallo-β-lactamase/β-CASP Domain of Artemis Constitutes the Catalytic Core for V(D)J Recombination. J. Exp. Med. 199, 315321.
  • [231]
    Chen, L., Trujillo, K., Sung, P., Tomkinson, A.E. (2000) Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J. Biol. Chem. 275, 2619626205.
  • [232]
    Li, Z.Y., Otevrel, T., Gao, Y.J., Cheng, H.L., Seed, B., Stamato, T.D., Taccioli, G.E., Alt, F.W. (1995) The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83, 10791089.
  • [233]
    Bryans, M., Valenzano, M.C., Stamato, T.D. (1999) Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat. Res. 433, 5358.
  • [234]
    Modesti, M., Hesse, J.E., Gellert, M. (1999) DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J. 18, 20082018.
  • [235]
    Wei, Y.F., Robins, P., Carter, K., Caldecott, K., Pappin, D.J.C., Yu, G.L., Wang, R.P., Shell, B.K., Nash, R.A., Schär, P., Barnes, D.E., Haseltine, W.A., Lindahl, T. (1995) Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol. Cell. Biol. 15, 32063216.
  • [236]
    Robins, P., Lindahl, T. (1996) DNA ligase IV from HeLa cell nuclei. J. Biol. Chem. 271, 2425724261.