• [1]
    Prade, R.A. (1995) Xylanases: from biology to biotechnology. Biotech. Genet. Eng. Rev. 13, 100131.
  • [2]
    Whistler, R., Masek, E. (1955) Enzymatic hydrolysis of xylan. J. Am. Chem. Soc. 77, 12411243.
  • [3]
    Shallom, D., Shoham, Y. (2003) Microbial hemicellulases. Curr. Opin. Microbiol. 6, 219228.
  • [4]
    Kulkarni, N., Shendye, A., Rao, M. (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411456.
  • [5]
    Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S. (2001) Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326338.
  • [6]
    Singh, S., Madlala, A.M., Prior, B.A. (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol. Rev. 27, 316.
  • [7]
    Wong, K.K.Y., Tan, L.U.L., Saddler, J.N. (1988) Multiplicity of beta-1,4-xylanases in microorganisms: functions and applications. Microbiol. Rev. 52, 305317.
  • [8]
    Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J., Eriksson, K. (2000) Relationships between activities of xylanases and xylan structures. Enzyme Microb. Technol. 27, 8994.
  • [9]
    Chanda, S.K., Hirst, E.L., Jones, J.K.N., Percival, E.G.V. The constitution of xylan from esparto grass. J. Chem. Soc. 1950. 12889–12897
  • [10]
    Eda, S., Ohnishi, A., Kato, K. (1976) Xylan isolated from the stalk of Nicotiana tabacum. Agric. Biol. Chem. 40, 359364.
  • [11]
    Barry, V., Dillon, T. Occurence of xylans in marine algae. Nature. 146, 1940. 620
  • [12]
    Nunn, J.R., Parolis, H., Russel, I. (1973) Polysaccharides of the red algae Chaetangium erinaceum. Part I: Isolation and characterization of the water-soluble xylan. Carbohydr. Res. 26, 169180.
  • [13]
    Percival, E.G.V., Chanda, S.K. (1950) The xylan of Rhodymenia palmata. Nature 166, 787788.
  • [14]
    Puls, J., Schmidt, O., Granzow, C. (1987) Glucuronidase in two microbial xylanolytic systems. Enzyme Microb. Technol. 9, 8388.
  • [15]
    Biely, P. (1985) Microbial xylanolytic systems. Trends Biotechnol. 3, 286290.
  • [16]
    Subramaniyan, S., Prema, P. (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22, 3364.
  • [17]
    Belancic, A., Scarpa, J., Peirano, A., Diaz, R., Steiner, J., Eyzaguirre, J. (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J. Biotechnol. 41, 7179.
  • [18]
    Sunna, A., Antranikian, G. (1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 3967.
  • [19]
    Elegir, G., Szakacs, M., Jeffries, T.W. (1994) Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B-12-2. Appl. Environ. Microbiol. 60, 26092615.
  • [20]
    Wubah, D.A., Akin, D.E., Borneman, W.S. (1993) Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi. Crit. Rev. Microbiol. 19, 99115.
  • [21]
    Matte, A., Forsberg, C.W. (1992) Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 58, 157168.
  • [22]
    Krause, D.O., Denman, S.E., Mackie, R.I., Morrison, M., Rae, A.L., Attwood, G.T., McSweeney, C.S. (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27, 663693.
  • [23]
    Gilbert, H.J., Hazlewood, G.P. (1993) Bacterial cellulases and xylanases. J. Gen. Microbiol. 139, 187194.
  • [24]
    Gilbert, H.J., Sullivan, D.A., Jenkins, G., Kellett, L.E., Minton, N.P., Hall, J. (1988) Molecular cloning of multiple xylanase genes from Pseudomonas fluorescens subsp. cellulosa. J. Gen. Microbiol. 134 (Pt 12), 32393247.
  • [25]
    Yang, R.C., MacKenzie, C.R., Bilous, D., Narang, S.A. (1989) Identification of two distinct Bacillus circulans xylanases by molecular cloning of the genes and expression in Escherichia coli. Appl. Environ. Microbiol. 55, 568572.
  • [26]
    Biely, P., Markovic, O., Mislovicova, D. (1985) Sensitive detection of endo-1,4-beta-glucanases and endo-1,4-beta-xylanases in gels. Anal. Biochem. 144, 147151.
  • [27]
    Luthi, E., Love, D.R., McAnulty, J., Wallace, C., Caughey, P.A., Saul, D., Bergquist, P.L. (1990) Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile Caldocellum saccharolyticum. Appl. Environ. Microbiol. 56, 10171024.
  • [28]
    Zhu, H., Paradis, F.W., Krell, P.J., Phillips, J.P., Forsberg, C.W. (1994) Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. J. Bacteriol. 176, 38853894.
  • [29]
    Irwin, D., Jung, E.D., Wilson, D.B. (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microbiol. 60, 763770.
  • [30]
    Black, G.W., Rixon, J.E., Clarke, J.H., Hazlewood, G.P., Ferreira, L.M., Bolam, D.N., Gilbert, H.J. (1997) Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J. Biotechnol. 57, 5969.
  • [31]
    Millward-Sadler, S.J., Davidson, K., Hazlewood, G.P., Black, G.W., Gilbert, H.J., Clarke, J.H. (1995) Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem. J. 312 (Pt 1), 3948.
  • [32]
    Hayashi, H., Takagi, K.I., Fukumura, M., Kimura, T., Karita, S., Sakka, K., Ohmiya, K. (1997) Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J. Bacteriol. 179, 42464253.
  • [33]
    Grepinet, O., Chebrou, M.C., Beguin, P. (1988) Purification of Clostridium thermocellum xylanase Z expressed in Escherichia coli and identification of the corresponding product in the culture medium of C. thermocellum. J. Bacteriol. 170, 45764581.
  • [34]
    Winterhalter, C., Heinrich, P., Candussio, A., Wich, G., Liebl, W. (1995) Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol. Microbiol. 15, 431444.
  • [35]
    Black, G.W., Rixon, J.E., Clarke, J.H., Hazlewood, G.P., Theodorou, M.K., Morris, P., Gilbert, H.J. (1996) Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem. J. 319 (Pt 2), 515520.
  • [36]
    Gilkes, N.R., Henrissat, B., Kilburn, D.G. R.C. Miller Jr. Warren, R.A. (1991) Domains in microbial 4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303315.
  • [37]
    Defaye, J., Guillot, J.M., Biely, P., Vrsanska, M. (1992) Positional isomers of thioxylobiose, their synthesis and inducing ability for d-xylan-degrading enzymes in the yeast Cryptococcus albidus. Carbohydr. Res. 228, 4764.
  • [38]
    Fontes, C.M., Gilbert, H.J., Hazlewood, G.P., Clarke, J.H., Prates, J.A., McKie, V.A., Nagy, T., Fernandes, T.H., Ferreira, L.M. (2000) A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology 146 (Pt 8), 19591967.
  • [39]
    Shulami, S., Gat, O., Sonenshein, A.L., Shoham, Y. (1999) The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J. Bacteriol. 181, 36953704.
  • [40]
    Teplitsky, A., Shulami, S., Moryles, S., Shoham, Y., Shoham, G. (2000) Crystallization and preliminary X-ray analysis of an intracellular xylanase from Bacillus stearothermophilus T-6. Acta Crystallogr. D: Biol. Crystallogr. 56 (Pt 2), 181184.
  • [41]
    Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L., Mornon, J.P. (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81, 8395.
  • [42]
    Henrissat, B., Coutinho, P.M. (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol. 330, 183201.
  • [43]
    Coutinho, P.M. and Henrissat, B. (1999) Carbohydrate-active enzyme server (CAZY) at URL:
  • [44]
    Gebler, J., Gilkes, N.R., Claeyssens, M., Wilson, D.B., Beguin, P., Wakarchuk, W.W., Kilburn, D.G. R.C. Miller Jr. Warren, R.A., Withers, S.G. (1992) Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J. Biol. Chem. 267, 1255912561.
  • [45]
    Claeyssens, M., Henrissat, B. (1992) Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci. 1, 12931297.
  • [46]
    Bourne, Y., Henrissat, B. (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr. Opin. Struct. Biol. 11, 593600.
  • [47]
    Bergquist, P.L., Gibbs, M.D., Morris, D.D., Thompson, D.R., Uhl, A.M., Daniel, R.M. (2001) Hyperthermophilic xylanases. Methods Enzymol. 330, 301319.
  • [48]
    Torronen, A., Rouvinen, J. (1997) Structural and functional properties of low molecular weight endo-1,4-beta-xylanases. J. Biotechnol. 57, 137149.
  • [49]
    Jeffries, T.W. (1996) Biochemistry and genetics of microbial xylanases. Curr. Opin. Biotechnol. 7, 337342.
  • [50]
    Flint, H.J., Martin, J., McPherson, C.A., Daniel, A.S., Zhang, J.X. (1993) A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175, 29432951.
  • [51]
    Rye, C.S., Withers, S.G. (2000) Glycosidase mechanisms. Curr. Opin. Chem. Biol. 4, 573580.
  • [52]
    Zechel, D.L., Withers, S.G. (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33, 1118.
  • [53]
    McCarter, J.D., Withers, S.G. (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4, 885892.
  • [54]
    Nurizzo, D., Turkenburg, J.P., Charnock, S.J., Roberts, S.M., Dodson, E.J., McKie, V.A., Taylor, E.J., Gilbert, H.J., Davies, G.J. (2002) Cellvibrio japonicus alpha-l-arabinanase 43A has a novel five-blade beta-propeller fold. Nat. Struct. Biol. 9, 665668.
  • [55]
    Alzari, P.M., Souchon, H., Dominguez, R. (1996) The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4, 265275.
  • [56]
    Guerin, D.M., Lascombe, M.B., Costabel, M., Souchon, H., Lamzin, V., Beguin, P., Alzari, P.M. (2002) Atomic (0.94 Å) resolution structure of an inverting glycosidase in complex with substrate. J. Mol. Biol. 316, 10611069.
  • [57]
    Larson, S.B., Day, J., Barba de la Rosa, A.P., Keen, N.T., McPherson, A. (2003) First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Biochemistry 42, 84118422.
  • [58]
    Lo Leggio, L., Kalogiannis, S., Bhat, M.K., Pickersgill, R.W. (1999) High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Proteins 36, 295306.
  • [59]
    Nolling, J., Breton, G., Omelchenko, M.V., Makarova, K.S., Zeng, Q., Gibson, R., Lee, H.M., Dubois, J., Qiu, D., Hitti, J., Wolf, Y.I., Tatusov, R.L., Sabathe, F., Doucette-Stamm, L., Soucaille, P., Daly, M.J., Bennett, G.N., Koonin, E.V., Smith, D.R. (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183, 48234838.
  • [60]
    da Silva, A.C., Ferro, J.A., Reinach, F.C., Farah, C.S., Furlan, L.R., Quaggio, R.B., Monteiro-Vitorello, C.B., Van Sluys, M.A., Almeida, N.F., Alves, L.M., do Amaral, A.M., Bertolini, M.C., Camargo, L.E., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L.P., Cicarelli, R.M., Coutinho, L.L., Cursino-Santos, J.R., El-Dorry, H., Faria, J.B., Ferreira, A.J., Ferreira, R.C., Ferro, M.I., Formighieri, E.F., Franco, M.C., Greggio, C.C., Gruber, A., Katsuyama, A.M., Kishi, L.T., Leite, R.P., Lemos, E.G., Lemos, M.V., Locali, E.C., Machado, M.A., Madeira, A.M., Martinez-Rossi, N.M., Martins, E.C., Meidanis, J., Menck, C.F., Miyaki, C.Y., Moon, D.H., Moreira, L.M., Novo, M.T., Okura, V.K., Oliveira, M.C., Oliveira, V.R., Pereira, H.A., Rossi, A., Sena, J.A., Silva, C., De Souza, R.F., Spinola, L.A., Takita, M.A., Tamura, R.E., Teixeira, E.C., Tezza, R.I., Trindade dos Santos, M., Truffi, D., Tsai, S.M., White, F.F., Setubal, J.C., Kitajima, J.P. (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459463.
  • [61]
    Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessieres, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S.C., Bron, S., Brouillet, S., Bruschi, C.V., Caldwell, B., Capuano, V., Carter, N.M., Choi, S.K., Codani, J.J., Connerton, I.F., Danchin, A. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249256.
  • [62]
    Xu, J., Bjursell, M.K., Himrod, J., Deng, S., Carmichael, L.K., Chiang, H.C., Hooper, L.V., Gordon, J.I. (2003) A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science 299, 20742076.
  • [63]
    Whitehead, T.R. (1993) Analyses of the gene and amino acid sequence of the Prevotella (Bacteroides) ruminicola 23 xylanase reveals unexpected homology with endoglucanases from other genera of bacteria. Curr. Microbiol. 27, 2733.
  • [64]
    Foong, F., Hamamoto, T., Shoseyov, O., Doi, R.H. (1991) Nucleotide sequence and characteristics of endoglucanase gene engB from Clostridium cellulovorans. J. Gen. Microbiol. 137 (Pt 7), 17291736.
  • [65]
    Cho, K.K., Kim, S.C., Woo, J.H., Bok, J.D., Choi, Y.J. (2000) Molecular cloning and expression of a novel family A endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli. Enzyme Microb. Technol. 27, 475481.
  • [66]
    Poole, D.M., Hazlewood, G.P., Laurie, J.l., Barker, P.J., Gilbert, H.J. (1990) Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol. Gen. Genet. 223 (2), 217230.
  • [67]
    Saloheimo, M., Siika-aho, M., Tenkanen, M. and Penttila, M.E. (2003) Novel xylanase from Trichoderma reesei, method for production thereof, and methods employing this enzyme. In: United States Patent Application 20030054518
  • [68]
    Tenkanen, M., Burgermeister, M., Vrsanska, M., Biely, P., Saloheimo, M., Siika-aho, M. (2003) A novel xylanase XYN IV from Trichoderma reesei and its action on different xylans. In: Recent Advances in Enzymes in Grain Processing (Courtin, C.M., Veraverbeke, W.S., Delcour, J.A., Eds.), pp.41–46 Kat. Univ. Leuven, Leuven.
  • [69]
    Braun, E.J., Rodrigues, C.A. (1993) Purification and properties of an endoxylanase from a corn stalk rot strain of Erwinia chrysanthemi. Phytopathology 83, 332338.
  • [70]
    Keen, N.T., Boyd, C., Henrissat, B. (1996) Cloning and characterization of a xylanase gene from corn strains of Erwinia chrysanthemi. Mol. Plant Microbe Interact. 9, 651657.
  • [71]
    Hurlbert, J.C. J.F. Preston 3rd (2001) Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi. J. Bacteriol. 183, 20932100.
  • [72]
    Suzuki, T., Ibata, K., Hatsu, M., Takamizawa, K., Keiichi, K. (1997) Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase. J. Fermen. Bioeng. 84, 8689.
  • [73]
    Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Barrell, D., Bateman, A., Binns, D., Biswas, M., Bradley, P., Bork, P., Bucher, P., Copley, R.R., Courcelle, E., Das, U., Durbin, R., Falquet, L., Fleischmann, W., Griffiths-Jones, S., Haft, D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lopez, R., Letunic, I., Lonsdale, D., Silventoinen, V., Orchard, S.E., Pagni, M., Peyruc, D., Ponting, C.P., Selengut, J.D., Servant, F., Sigrist, C.J., Vaughan, R., Zdobnov, E.M. (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res. 31, 315318.
  • [74]
    Nishitani, K., Nevins, D.J. (1991) Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J. Biol. Chem. 266, 65396543.
  • [75]
    Biely, P., Vrsanska, M., Kremnicky, L., Tenkanen, M., Poutanen, K., Hayn, M. (1993) Catalytic properties of endo-b-1,4-xylanases of Trichoderma reesei. In: Trichoderma reesei Cellulases and Other Hydrolases (Suominen, P., Reinikainen, T., Eds.), pp.125–135 Fagepaino Oy, Helsinki.
  • [76]
    Parkkinen, T., Hakulinen, N., Tenkanen, M., Siika-aho, M., Rouvinen, J. (2004) Crystallization and preliminary X-ray analysis of a novel Trichoderma reesei xylanase IV belonging to glycoside hydrolase family 5. Acta Crystallogr. D: Biol. Crystallogr. 60, 542544.
  • [77]
    Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Fuji, F., Hirama, C., Nakamura, Y., Ogasawara, N., Kuhara, S., Horikoshi, K. (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res. 28, 43174331.
  • [78]
    Takami, H., Horikoshi, K. (2000) Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view. Extremophiles 4, 99108.
  • [79]
    Dutron, A., Georis, J., Genot, B., Dauvrin, T., Collins, T., Hoyoux, A. and Feller, G. (2004) Use of family 8 enzymes with xylanolytic activity in baking. In: World Intellectual Property Organization, PCT, WO 2004/023879 A1
  • [80]
    Collins, T., Meuwis, M.A., Stals, I., Claeyssens, M., Feller, G., Gerday, C. (2002) A novel family 8 xylanase: functional and physico-chemical characterization. J. Biol. Chem. 277, 3513335139.
  • [81]
    Collins, T., Meuwis, M.A., Gerday, C., Feller, G. (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 328, 419428.
  • [82]
    Van Petegem, F., Collins, T., Meuwis, M.A., Gerday, C., Feller, G., Van Beeumen, J. (2002) Crystallization and preliminary X-ray analysis of a xylanase from the psychrophile Pseudoalteromonas haloplanktis. Acta Crystallogr. D: Biol. Crystallogr. 58, 14941496.
  • [83]
    Van Petegem, F., Collins, T., Meuwis, M.A., Gerday, C., Feller, G., Van Beeumen, J. (2003) The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investgation of the active site. J. Biol. Chem. 278, 75317539.
  • [84]
    Yoon, K.H., Yun, H.N., Jung, K.H. (1998) Molecular cloning of a Bacillus sp. KK-1 xylanase gene and characterization of the gene product. Biochem. Mol. Biol. Int. 45, 337347.
  • [85]
    Parsiegla, G., Juy, M., Reverbel-Leroy, C., Tardif, C., Belaich, J.P., Driguez, H., Haser, R. (1998) The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution. EMBO J. 17, 55515562.
  • [86]
    Egloff, M.P., Uppenberg, J., Haalck, L., Van Tilbeurgh, H. (2001) Crystal structure of maltose phosphorylase from Lactobacillus brevis: unexpected evolutionary relationship with glucoamylases. Structure (Camb) 9, 689697.
  • [87]
    Fierobe, H.P., Bagnara-Tardif, C., Gaudin, C., Guerlesquin, F., Sauve, P., Belaich, A., Belaich, J.P. (1993) Purification and characterization of endoglucanase C from Clostridium cellulolyticum. Catalytic comparison with endoglucanase A. Eur. J. Biochem. 217, 557565.
  • [88]
    Biely, P. (2003) Diversity of microbial endo-b-1,4-xylanases. In: Applications of Enzymes to Lignocellulosics (Mansfield, S.D., Saddler, J.N., Eds.), pp.361–380 American chemical Society, Washington.
  • [89]
    Gilkes, N.R., Claeyssens, M., Aebersold, R., Henrissat, B., Meinke, A., Morrison, H.D., Kilburn, D.G., Warren, R.A. R.C. Miller Jr. (1991) Structural and functional relationships in two families of beta-1,4-glycanases. Eur. J. Biochem. 202, 367377.
  • [90]
    Biely, P., Vrsanska, M., Tenkanen, M., Kluepfel, D. (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J. Biotechnol. 57, 151166.
  • [91]
    Van Tilbeurgh, H., Claeyssens, M. (1985) Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett. 187, 283288.
  • [92]
    Biely, P., Kluepfel, D., Morosoli, R., Shareck, F. (1993) Mode of action of three endo-beta-1,4-xylanases of Streptomyces lividans. Biochim. Biophys. Acta 1162, 246254.
  • [93]
    Haas, H., Herfurth, E., Stoffler, G., Redl, B. (1992) Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum. Biochim. Biophys. Acta 1117, 279286.
  • [94]
    Biely, P., Kratky, Z., Vrsanska, M. (1981) Substrate-binding site of endo-1,4-beta-xylanase of the yeast Cryptococcus albidus. Eur. J. Biochem. 119, 559564.
  • [95]
    Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., Derewenda, Z.S. (1994) Crystal structure, at 2.6-Å resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-d-glycanases. J. Biol. Chem. 269, 2081120814.
  • [96]
    White, A., Withers, S.G., Gilkes, N.R., Rose, D.R. (1994) Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. Biochemistry 33, 1254612552.
  • [97]
    Harris, G.W., Jenkins, J.A., Connerton, I., Cummings, N., Lo Leggio, L., Scott, M., Hazlewood, G.P., Laurie, J.I., Gilbert, H.J., Pickersgill, R.W. (1994) Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure 2, 11071116.
  • [98]
    Pell, G., Taylor, E.J., Gloster, T.M., Turkenburg, J.P., Fontes, C.M., Ferreira, L.M., Nagy, T., Clark, S.J., Davies, G.J., Gilbert, H.J. (2004) The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279, 95979605.
  • [99]
    Pell, G., Szabo, L., Charnock, S.J., Xie, H., Gloster, T.M., Davies, G.J., Gilbert, H.J. (2004) Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. J. Biol. Chem. 279, 1177711788.
  • [100]
    Dominguez, R., Souchon, H., Spinelli, S., Dauter, Z., Wilson, K.S., Chauvaux, S., Beguin, P., Alzari, P.M. (1995) A common protein fold and similar active site in two distinct families of beta-glycanases. Nat. Struct. Biol. 2, 569576.
  • [101]
    Mechaly, A., Teplitsky, A., Belakhov, V., Baasov, T., Shoham, G., Shoham, Y. (2000) Overproduction and characterization of seleno-methionine xylanase T-6. J. Biotechnol. 78, 8386.
  • [102]
    Schmidt, A., Schlacher, A., Steiner, W., Schwab, H., Kratky, C. (1998) Structure of the xylanase from Penicillium simplicissimum. Protein Sci. 7, 20812088.
  • [103]
    Canals, A., Vega, M.C., Gomis-Ruth, F.X., Diaz, M., Santamaria, R.R., Coll, M. (2003) Structure of xylanase Xys1delta from Streptomyces halstedii. Acta Crystallogr. D: Biol. Crystallogr. 59, 14471453.
  • [104]
    Fujimoto, Z., Kuno, A., Kaneko, S., Yoshida, S., Kobayashi, H., Kusakabe, I., Mizuno, H. (2000) Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain. J. Mol. Biol. 300, 575585.
  • [105]
    Natesh, R., Bhanumoorthy, P., Vithayathil, P.J., Sekar, K., Ramakumar, S., Viswamitra, M.A. (1999) Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J. Mol. Biol. 288, 9991012.
  • [106]
    Ryttersgaard, C., Lo Leggio, L., Coutinho, P.M., Henrissat, B., Larsen, S. (2002) Aspergillus aculeatus beta-1,4-galactanase: substrate recognition and relations to other glycoside hydrolases in clan GH-A. Biochemistry 41, 1513515143.
  • [107]
    Christakopoulos, P., Katapodis, P., Kalogeris, E., Kekos, D., Macris, B.J., Stamatis, H., Skaltsa, H. (2003) Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int. J. Biol. Macromol. 31, 171175.
  • [108]
    Ntarima, P. (2000) Les xylanases des familles 10 et 11: différentiation et caractérisation, Laboratory of Biochemistry, University of Gent, Gent, pp. 96
  • [109]
    Katapodis, P., Vrsanska, M., Kekos, D., Nerinckx, W., Biely, P., Claeyssens, M., Macris, B.J., Christakopoulos, P. (2003) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr. Res. 338, 18811890.
  • [110]
    Bray, M.R., Clarke, A.J. (1992) Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur. J. Biochem. 204, 191196.
  • [111]
    Vrsanska, M., Gorbacheva, I.V., Kratky, Z., Biely, P. (1982) Reaction pathways of substrate degradation by an acidic endo-1,4-beta-xylanase of Aspergillus niger. Biochim. Biophys. Acta 704, 114122.
  • [112]
    Heightman, T.D., Vasella, A. (1999) Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidase. Angew. Chem. Int. Ed. 38, 750770.
  • [113]
    Ntarima, P., Nerinckx, W., Klarskov, K., Devreese, B., Bhat, M.K., Van Beeumen, J., Claeyssens, M. (2000) Epoxyalkyl glycosides of d-xylose and xylo-oligosaccharides are active-site markers of xylanases from glycoside hydrolase family 11, not from family 10. Biochem. J. 347 (Pt 3), 865873.
  • [114]
    Fushinobu, S., Ito, K., Konno, M., Wakagi, T., Matsuzawa, H. (1998) Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 11, 11211128.
  • [115]
    Krengel, U., Dijkstra, B.W. (1996) Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger, molecular basis for its low pH optimum. J. Mol. Biol. 263, 7078.
  • [116]
    Sabini, E., Wilson, K.S., Danielsen, S., Schulein, M., Davies, G.J. (2001) Oligosaccharide binding to family 11 xylanases: both covalent intermediate and mutant product complexes display (2,5)B conformations at the active. centre. Acta Crystallogr. D: Biol. Crystallogr. 57, 13441347.
  • [117]
    Wakarchuk, W.W., Campbell, R.L., Sung, W.L., Davoodi, J., Yaguchi, M. (1994) Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 3, 467475.
  • [118]
    Oakley, A.J., Heinrich, T., Thompson, C.A., Wilce, M.C. (2003) Characterization of a family 11 xylanase from Bacillus subtillis B230 used for paper bleaching. Acta Crystallogr. D: Biol. Crystallogr. 59, 627636.
  • [119]
    Ay, J., Gotz, F., Borriss, R., Heinemann, U. (1998) Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc. Natl. Acad. Sci. USA 95, 66136618.
  • [120]
    Hakulinen, N., Turunen, O., Janis, J., Leisola, M., Rouvinen, J. (2003) Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur. J. Biochem. 270, 13991412.
  • [121]
    McCarthy, A.A., Morris, D.D., Bergquist, P.L., Baker, E.N. (2000) Structure of XynB, a highly thermostable beta-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 Å resolution. Acta Crystallogr. D: Biol. Crystallogr. 56 (Pt 11), 13671375.
  • [122]
    Kumar, P.R., Eswaramoorthy, S., Vithayathil, P.J., Viswamitra, M.A. (2000) The tertiary structure at 1.59 Å resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti bainier. J. Mol. Biol. 295, 581593.
  • [123]
    Wouters, J., Georis, J., Engher, D., Vandenhaute, J., Dusart, J., Frere, J.M., Depiereux, E., Charlier, P. (2001) Crystallographic analysis of family 11 endo-beta-1,4-xylanase Xyl1 from Streptomyces sp. S38. Acta Crystallogr. D: Biol. Crystallogr. 57, 18131819.
  • [124]
    Gruber, K., Klintschar, G., Hayn, M., Schlacher, A., Steiner, W., Kratky, C. (1998) Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry 37, 1347513485.
  • [125]
    Campbell, R.L., Rose, D.R., Wakarchuk, W.W., To, R.J., Sung, Z., Yagushi, M. (1993) High resolution structures of xylanases from Bacillus circulans and Trichoderma harzianum identify a new folding pattern and implications for the atomic basis of the catalysis. Foundation for biotechnical and industrial fermentation research. In: Trichoderma reesei Cellulases and Other Hydrolases (Souminen, P., Reikainen, T., Eds.), pp.63–72 Espoo, Finland.
  • [126]
    Torronen, A., Rouvinen, J. (1995) Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34, 847856.
  • [127]
    Torronen, A., Harkki, A., Rouvinen, J. (1994) Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 13, 24932501.
  • [128]
    Harris, G.W., Pickersgill, R.W., Connerton, I., Debeire, P., Touzel, J.P., Breton, C., Perez, S. (1997) Structural basis of the properties of an industrially relevant thermophilic xylanase. Proteins 29, 7786.
  • [129]
    Penttila, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R., Knowles, J. (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 1692, 253263.
  • [130]
    Biely, P., Vrsanska, M., Claeyssens, M. (1991) The endo-1,4-beta-glucanase I from Trichoderma reesei. Action on beta-1,4-oligomers and polymers derived from d-glucose and d-xylose. Eur. J. Biochem. 200, 157163.
  • [131]
    Kleywegt, G.J., Zou, J.Y., Divne, C., Davies, G.J., Sinning, I., Stahlberg, J., Reinikainen, T., Srisodsuk, M., Teeri, T.T., Jones, T.A. (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. J. Mol. Biol. 272, 383397.
  • [132]
    Gosalbes, M.J., Perez-Gonzalez, J.A., Gonzalez, R., Navarro, A. (1991) Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. J. Bacteriol. 173, 77057710.
  • [133]
    Morris, D.D., Gibbs, M.D., Ford, M., Thomas, J., Bergquist, P.L. (1999) Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles 3, 103111.
  • [134]
    Gibbs, M.D., Reeves, R.A., Farrington, G.K., Anderson, P., Williams, D.P., Bergquist, P.L. (2000) Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1. Curr. Microbiol. 40, 333340.
  • [135]
    Schell, M.A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M.C., Desiere, F., Bork, P., Delley, M., Pridmore, R.D., Arigoni, F. (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 99, 1442214427.
  • [136]
    Kimura, T., Ito, J., Kawano, A., Makino, T., Kondo, H., Karita, S., Sakka, K., Ohmiya, K. (2000) Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp.40. Biosci. Biotechnol. Biochem. 64, 12301237.
  • [137]
    Waino, M., Ingvorsen, K. (2003) Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7, 8793.
  • [138]
    Wejse, P.L., Ingvorsen, K., Mortensen, K.K. (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7, 423431.
  • [139]
    Vieille, C., Zeikus, G.J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 143.
  • [140]
    Cannio, R., Di Prizito, N., Rossi, M., Morana, A. (2004) A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8, 117124.
  • [141]
    Sunna, A., Bergquist, P.L. (2003) A gene encoding a novel extremely thermostable1,4-beta-xylanase isolated directly from an environmental DNA sample. Extremophiles 7, 6370.
  • [142]
    Sunna, A., Moracci, M., Rossi, M., Antranikian, G. (1997) Glycosyl hydrolases from hyperthermophiles. Extremophiles 1, 213.
  • [143]
    Uhl, A.M., Daniel, R.M. (1999) The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii strain AN1. Extremophiles 3, 263267.
  • [144]
    Zverlov, V., Piotukh, K., Dakhova, O., Velikodvorskaya, G., Borriss, R. (1996) The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl. Microbiol. Biotechnol. 45, 245247.
  • [145]
    Luthi, E., Jasmat, N.B., Bergquist, P.L. (1990) Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: overexpression of the gene in Escherichia coli and characterization of the gene product. Appl. Environ. Microbiol. 56, 26772683.
  • [146]
    Abou-Hachem, M., Olsson, F., Nordberg Karlsson, E. (2003) Probing the stability of the modular family 10 xylanase from Rhodothermus marinus. Extremophiles 7, 483491.
  • [147]
    Khasin, A., Alchanati, I., Shoham, Y. (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59, 17251730.
  • [148]
    Simpson, H.D., Haufler, U.R., Daniel, R.M. (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem. J. 277 (Pt 2), 413417.
  • [149]
    Schlacher, A., Holzmann, K., Hayn, M., Steiner, W., Schwab, H. (1996) Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J. Biotechnol. 49, 211218.
  • [150]
    Connerton, I., Cummings, N., Harris, G.W., Debeire, P., Breton, C. (1999) A single domain thermophilic xylanase can bind insoluble xylan: evidence for surface aromatic clusters. Biochim. Biophys. Acta 1433, 110121.
  • [151]
    Andrade, C.M.M.C., Pereira, N., Antranikian, G. (1999) Extremely thermophilic microorganisms and their polymer-hydrolytic enzymes. Rev. Microbiol. 30, 287298.
  • [152]
    Niehaus, F., Bertoldo, C., Kahler, M., Antranikian, G. (1999) Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51, 711729.
  • [153]
    Bragger, J.M., Daniel, R.M., Coolbear, T., Morgan, H.W. (1989) Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Appl. Environ. Microbiol. 31, 556561.
  • [154]
    Turunen, O., Vuorio, M., Fenel, F., Leisola, M. (2002) Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng. 15, 141145.
  • [155]
    Fontes, C.M., Hall, J., Hirst, B.H., Hazlewood, G.P., Gilbert, H.J. (1995) The resistance of cellulases and xylanases to proteolytic inactivation. Appl. Microbiol. Biotechnol. 43, 5257.
  • [156]
    Turunen, O., Etuaho, K., Fenel, F., Vehmaanpera, J., Wu, X., Rouvinen, J., Leisola, M. (2001) A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermal stability through synergism. J. Biotechnol. 88, 3746.
  • [157]
    Wakarchuk, W.W., Sung, W.L., Campbell, R.L., Cunningham, A., Watson, D.C., Yaguchi, M. (1994) Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 7, 13791386.
  • [158]
    Sheridan, P.P., Panasik, N., Coombs, J.M., Brenchley, J.E. (2000) Approaches for deciphering the structural basis of low temperature enzyme activity. Biochim. Biophys. Acta 1543, 417433.
  • [159]
    Humphry, D.R., George, A., Black, G.W., Cummings, S.P. (2001) Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int. J. Syst. Evol. Microbiol. 51, 12351243.
  • [160]
    Akila, G., Chandra, T.S. (2003) A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS Microbiol. Lett. 219, 6367.
  • [161]
    Petrescu, I., Lamotte-Brasseur, J., Chessa, J.P., Ntarima, P., Claeyssens, M., Devreese, B., Marino, G., Gerday, C. (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4, 137144.
  • [162]
    Turkiewiz, M., Kalinowska, H., Zielinska, M., Bielecki, S. (2000) Purification and characterisation of two endo-1,4-xylanases from Antarctic krill, Euphasia superba Dana. Comp. Biol. Physiol. Part B 127, 325335.
  • [163]
    Bradner, J.R., Sidhu, R.K., Gillings, M., Nevalainen, K.M. (1999) Hemicellulase activity of antarctic microfungi. J. Appl. Microbiol. 87, 366370.
  • [164]
    Inglis, G.D., Popp, A.P., Selinger, L.B., Kawchuk, L.M., Gaudet, D.A., McAllister, T.A. (2000) Production of cellulases and xylanases by low-temperature basidiomycetes. Can. J. Microbiol. 46, 860865.
  • [165]
    Collins, T., Claverie, P., D'Amico, S., Georlette, D., Gratia, E., Hoyoux, A., Meuwis, M.A., Poncin, J., Sonan, G., Feller, G., Gerday, C., Life in the Cold: Psychrophilic Enzymes. Recent Research Developments in Proteins. Vol. 1, 2002. Transworld Research Network, Trivandrum. pp. 13–26
  • [166]
    Feller, G., Gerday, C. (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1, 200208.
  • [167]
    Georlette, D., Blaise, V., Collins, T., D'Amico, S., Gratia, E., Hoyoux, A., Marx, J.C., Sonan, G., Feller, G., Gerday, C. (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28, 2542.
  • [168]
    Horikoshi, K. (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63, 735750.
  • [169]
    Gessesse, A. (1998) Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64, 35333535.
  • [170]
    Yang, V.W., Zhuang, Z., Elegir, G., Jeffries, T.W. (1995) Alkaline-active xylanase produced by an alkaliphilic Bacillus sp. isolated from kraft pulp. J. Indust. Microbiol. 15, 434441.
  • [171]
    Ratanakhanokchai, K., Kyu, K.L., Tanticharoen, M. (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65, 694697.
  • [172]
    Duarte, M.C., Pellegrino, A.C., Portugal, E.P., Ponezi, A.N., Franco, T.T. (2000) Characterization of alkaline xylanases from Bacillus pumilus. Braz. J. Microbiol. 31, 9094.
  • [173]
    Christakopoulos, P., Nerinckx, W., Kekos, D., Macris, B., Claeyssens, M. (1996) Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J. Biotechnol. 51, 181189.
  • [174]
    Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., Horikoshi, K. (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59, 23112316.
  • [175]
    Horikoshi, K., Atsukawa, Y. (1973) Xylanase produced by alkalophilic Bacillus no C-59-2. Agric. Biol. Chem. 37, 20972103.
  • [176]
    Torronen, A., Mach, R.L., Messner, R., Gonzalez, R., Kalkkinen, N., Harkki, A., Kubicek, C.P. (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (NY) 10, 14611465.
  • [177]
    Inagaki, K., Nakahira, K., Mukai, K., Tamura, T., Tanaka, H. (1998) Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci. Biotechnol. Biochem. 62, 10611067.
  • [178]
    Iefuji, H., Chino, M., Kato, M., Iimura, Y. (1996) Acid xylanase from yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci. Biotechnol. Biochem. 60, 13311338.
  • [179]
    Ito, K., Iwashita, K., Iwano, K. (1992) Cloning and sequencing of the xynC gene encoding acid xylanase of Aspergillus kawachii. Biosci. Biotechnol. Biochem. 56, 13381340.
  • [180]
    Joshi, M.D., Sidhu, G., Nielsen, J.E., Brayer, G.D., Withers, S.G., McIntosh, L.P. (2001) Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40, 1011510139.
  • [181]
    Sapag, A., Wouters, J., Lambert, C., De Ioannes, P., Eyzaguirre, J., Depiereux, E. (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95, 109131.
  • [182]
    Joshi, M.D., Sidhu, G., Pot, I., Brayer, G.D., Withers, S.G., McIntosh, L.P. (2000) Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299, 255279.
  • [183]
    Chen, Y.L., Tang, T.Y., Cheng, K.J. (2001) Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47, 10881094.
  • [184]
    Godfrey, T., West, S. (1996) Industrial Enzymology, Second ed. Macmillan Press Ltd., London.
  • [185]
    Godfrey, T. (2003) The enzymes market for grain processing. In: Recent Advances in Enzymes in Grain Processing (Courtin, C.M., Veraverbeke, W.S., Delcour, J.A., Eds.), pp.401–406 Kat. Univ. Leuven, Leuven.
  • [186]
    Bhat, M.K. (2000) Cellulases and related enzymes in biotechnology. Biotech. Adv. 18, 355383.
  • [187]
    Tikhomirov, D.F., Sinitsyn, A.P., Zorov, I.N., Williams, C. (2003) Non-starch polysaccharide hydrolysing microbial enzymes in grain processing. In: Recent Advances in Enzymes in Grain Processing (Courtin, C.M., Veraverbeke, W.S., Delcour, J.A., Eds.), pp.413–418 Kat. Univ. Leuven, Leuven.
  • [188]
    Kamal Kumar, B., Balakrishnan, H. and Rele, M.V. (2004) Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. J. Ind. Microbiol. Biotechnol. Epub ahead of print
  • [189]
    Katapodis, P., Vardakou, M., Kalogeris, E., Kekos, D., Macris, B.J., Christakopoulos, P. (2003) Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. Eur. J. Nutr. 42, 5560.
  • [190]
    Matsumura, S., Sakiyama, K., Toshima, K. (1999) Preparation of octyl-B-d-xylobioside and xyloside by xylanase catalyzed direct transglycosylation reaction of xylan and octanol. Biotechnol. Lett. 21, 1722.
  • [191]
    Imanaka, T. and Sakurai, S. (1992) Method of washing super precision devices, semiconductors, with enzymes. United States Patent 5,078,802
  • [192]
    Viikari, L. (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13, 335350.
  • [193]
    Mielenz, J.R. (2001) Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol. 4, 324329.
  • [194]
    Saha, B.C. (2003) Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279291.
  • [195]
    Campenhout, L.V., Somers, I., Van de Craen, S., Adams, C. (2003) In vitro test to evaluate protein degradation by feed enzymes. In: Recent Advances in Enzymes in Grain Processing (Courtin, C.M., Veraverbeke, W.S., Delcour, J.A., Eds.), pp.387–390 Kat. Univ. Leuven., Leuven.
  • [196]
    Galante, Y.M., De Conti, A., Monteverdi, R. (1998) Application of Trichoderma enzymes in food and feed industries. In: Trichoderma and Gliocladium– Enzymes, Biological Control and Commercial Applications (Harman, G.E., Kubicek, C.P., Eds.), pp.327–342 Taylor and Francis, London.
  • [197]
    Wong, K.K.Y., Saddler, J.N. (1993) Applications of hemicellulases in the food, feed and pulp and paper industries. In: Hemicelluloses and Hemicellulases (Coughlan, M.P., Hazlewood, G.P., Eds.), pp.127–143 Portland Press, London.
  • [198]
    Maat, J., Roza, M., Verbakel, J., Stam, H., daSilra, M.J.S., Egmond, M.R., Hagemans, M.L.D., van Garcom, R.F.M., Hessing, J.G.M., van Derhondel, C., van Rotterdam, C. (1992) Xylanases and their application in baking. In: Xylan and Xylanases (Visser, J., Beldman, G., van Someren, M.A.K., Voragen, A.G.J., Eds.), pp.349–360 Elsevier, Amsterdam.
  • [199]
    Mathlouthi, N., Lalles, J.P., Lepercq, P., Juste, C., Larbier, M. (2002) Xylanase and beta-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. J. Anim. Sci. 80, 27732779.
  • [200]
    Mathlouthi, N., Mohamed, M.A., Larbier, M. (2003) Effect of enzyme preparation containing xylanase and beta-glucanase on performance of laying hens fed wheat/barley- or maize/soybean meal-based diets. Br. Poult. Sci. 44, 6066.
  • [201]
    Mathlouthi, N., Juin, H., Larbier, M. (2003) Effect of xylanase and beta-glucanase supplementation of wheat- or wheat- and barley-based diets on the performance of male turkeys. Br. Poult. Sci. 44, 291298.
  • [202]
    Pala, H., Mota, M., Gama, F.M. (2004) Enzymatic versus chemical deinking of non-impact ink printed paper. J. Biotechnol. 108, 7989.
  • [203]
    Frederix, S.A., Courtin, C.M., Delcour, J.A. (2003) Impact of endoxylanases with different substrate selectivity on gluten-starch separation. In: Recent Advances in Enzymes in Grain Processing (Courtin, C.M., Veraverbeke, W.S., Delcour, J.A., Eds.), pp.247–254 Kat. Univ. Leuven, Leuven.
  • [204]
    Sharma, H.S.S. (1987) Enzymatic degradation of residual non-cellulosic polysaccharides present on dew-retted flax fibers. Appl. Microbiol. Biotechnol. 26, 27142723.
  • [205]
    Guex, N., Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 27142723.
  • [206]
    Georis, J., Giannotta, F., Lamotte-Brasseur, J., Devreese, B., Van Beeumen, J., Granier, B., Frere, J.M. (1999) Sequence, overproduction and purification of the family 11 endo-beta-1,4-xylanase encoded by the xyl1 gene of Streptomyces sp. S38. Gene 237, 123133.
  • [207]
    Beguin, P., Cornet, P., Aubert, J.P. (1985) Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162, 102105.