SEARCH

SEARCH BY CITATION

References

  • [1]
    Chowdhury, R., Sahu, G.K., Das, J. (1996) Stress response in pathogenic bacteria. J. Biosci. 21, 149160.
  • [2]
    Carey, M.C., Duane, W.C. (1994) Enterohepatic circulation. In: The Liver: Biology and Pathobiology (Arias, I.M., Boyer, J.L., Fausto, N., Jackoby, W.B., Schachter, D.A., Shafritz, D.A., Eds.), pp.719–738 Raven Press Ltd, New York.
  • [3]
    Erlinger, S. (1994) Bile flow. In: The Liver: Biology and Pathobiology (Arias, I.M., Boyer, J.L., Fausto, N., Jackoby, W.B., Schachter, D.A., Shafritz, D.A., Eds.), pp.769–786 Raven Press Ltd, New York.
  • [4]
    Hofmann, A.F. (1999) Bile acids: the good, the bad, and the ugly. News Physiol. Sci. 14, 2429.
  • [5]
    Johnson, L.R. Bile secretion and gallbladder function. Johnson, L.R., Ed. Essential Medical Physiology. Second ed. 1998. Lippincott-Raven, Philadelphia. 465–471
  • [6]
    McPhee, M.S., Greenberger, N.J. Diseases of the gallbladder and bile duct. Harrison, R.T., Ed. Harrison's Principles of Internal Medicine. Eleventh ed. 1987. Mc Graw-Hill, New York. 1358–1362
  • [7]
    Hofmann, A.F. (1994) Bile acids. In: The Liver: Biology and Pathobiology (Arias, I.M., Boyer, J.L., Fausto, N., Jackoby, W.B., Schachter, D.A., Shafritz, D.A., Eds.), pp.677–718 Raven Press Ltd, New York.
  • [8]
    Huijghebaert, S.M., Hofmann, A.F. (1986) Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures. J. Lipid Res. 27, 742752.
  • [9]
    Hardison, W.G. (1978) Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology 75, 7175.
  • [10]
    Sjovall, J. (1959) Dietary glycine and taurine on bile acid conjugation on man. Bile acids and steroids 75. Proc. Soc. Exp. Biol. Med. 100, 676678.
  • [11]
    Hofmann, A.F., Mysels, K.J. (1992) Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH and Ca2+ ions. J. Lipid Res. 33, 617626.
  • [12]
    Hofmann, A.F., Roda, A. (1984) Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J. Lipid Res. 25, 14771489.
  • [13]
    Cohen, D.E., Carey, M.C. (1990) Physical chemistry of biliary lipids during bile formation. Hepatology 112, 143S148S.
  • [14]
    Hofmann, A.F. (1989) Enterohepatic circulation of bile acids. In: Handbook of Physiology – Section on the Gastrointestinal System (Schultz, S.G., Ed.), pp.567–596 American Physiology Society, Bethesda.
  • [15]
    Christiaens, H., Leer, R.J., Pouwels, P.H., Verstraete, W. (1992) Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58, 37923798.
  • [16]
    De Smet, I., Van Hoorde, L., Vande Woestyne, M., Christiaens, H., Verstraete, W. (1995) Significance of bile salt hydrolytic activities of Lactobacilli. J. Appl. Bacteriol. 79, 292301.
  • [17]
    Grill, J.P., Schneider, F., Crociani, J., Ballongue, J. (1995) Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536. Appl. Environ. Microbiol. 61, 25772582.
  • [18]
    Lundeen, S.G., Savage, D.C. (1990) Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100–100. J. Bacteriol. 172, 41714177.
  • [19]
    Doerner, K.C., Takamine, F., LaVoie, C.P., Mallonee, D.H., Hylemon, P.B. (1997) Assessment of fecal bacteria with bile acid 7α-dehydroxylation activity for the presence of bai-like genes. Appl. Environ. Microbiol. 63, 11851188.
  • [20]
    Mallonee, D.H., Hylemon, P.B. (1996) Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J. Bacteriol. 178, 70537058.
  • [21]
    Wells, J.E., Hylemon, P.B. (2000) Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Appl. Environ. Microbiol. 66, 11071113.
  • [22]
    Bortolini, O., Medici, A., Poli, S. (1997) Biotransformations on steroid nucleus of bile acids. Steroids 62, 564577.
  • [23]
    Owen, R.W. (1985) Biotransformation of bile acids by Clostridia. J. Med. Microbiol. 20, 233238.
  • [24]
    Pazzi, P., Puviani, A.C., Dalla Libera, M., Guerra, G., Ricci, D., Gullini, S., Ottolenghi, C. (1997) Bile salt-induced cytotoxicity and ursodeoxycholate cytoprotection: in vitro study in perfused rat hepatocytes. Eur. J. Gastroenterol. 9, 703709.
  • [25]
    Powell, A.A., LaRue, J.M., Martinez, J.D. (2001) Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells. Biochem. J. 356, 481486.
  • [26]
    Kheroua, O., Belleville, J. (1981) Behaviour of digestive enzymes in the pancreatic juice and pancreas of rats fed on a low-protein diet than on a balanced diet. Reprod. Nutr. Dev. 21, 901917.
  • [27]
    Opleta, K., Butzner, J.D., Schaeffer, E.A., Gall, D.G. (1988) The effect of protein-calorie malnutrition on the developing liver. Pediatr. Res. 23, 505508.
  • [28]
    Paumgartner, G., Sauerbruch, T. (1991) Gallstones: pathogenesis. Lancet 338, 11171121.
  • [29]
    Marteau, P., Gehard, M.F., Myara, A., Bouvier, E., Trivin, F., Rambaud, J.C. (1995) Metabolism of bile salts by alimentary bacteria during transit in the human small intestine. Microbial Ecol. Health Dis. 8, 151157.
  • [30]
    Martin, M.S., Justrabo, E., Jeannin, J.F., Leclerc, A., Martin, F. (1981) Effect of dietary chenodeoxycholic acid in intestinal carcinogenesis induced by 1,2 dimethylhydrazine in mice. Br. J. Cancer 43, 884886.
  • [31]
    Nagengast, F.M., Grubben, M.J., Van Munster, I.P. (1995) Role of bile acids in colorectal carcinogenesis. Eur. J. Cancer 31, 10671070.
  • [32]
    Salminen, S., Isolauri, E., Salminen, E. (1996) Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek 70, 347358.
  • [33]
    Albalak, A., Zeidel, M.L., Zucker, S.D., Jackson, A.A., Donovan, J.M. (1996) Effects of submicellar bile salt concentrations on biological membrane permeability to low molecular weight non-ionic solutes. Biochemistry 35, 79367945.
  • [34]
    De Boever, P., Wouters, R., Verschaeve, L., Berckmans, P., Schoeters, G., Verstraete, W. (2000) Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity. Appl. Microbiol. Biotechnol. 53, 709714.
  • [35]
    Shekels, L.C., Beste, J.E., Ho, S.B. (1996) Tauroursodeoxycholic acid protects in vitro models of human colonic cancer cells from cytotoxic effects of hydrophobic bile acid. J. Lab. Clin. Med. 127, 5766.
  • [36]
    Begley, M., Gahan, C.G.M., Hill, C. (2002) Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection and identification of genetic loci involved in bile resistance. Appl. Environ. Microbiol. 68, 60056012.
  • [37]
    Flahaut, S., Benachour, A., Giard, J.C., Boutibonnes, P., Auffray, Y. (1996) Defense against lethal treatments and de novo protein synthesis induced by NaCl in Enterococcus faecalis ATCC 19433. Arch. Microbiol. 165, 317324.
  • [38]
    Flahaut, S., Frere, J., Boutibonnes, P., Auffray, Y. (1996) Comparison of bile salts and sodium doceyl sulfate stress responses in Enterococcus faecalis. Appl. Environ. Microbiol. 62, 24162420.
  • [39]
    Flahaut, S., Hartke, A., Giard, J.C., Benachour, A., Boutibonnes, P., Auffray, A. (1996) Relationship between stress response towards bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol. Lett. 138, 4954.
  • [40]
    Flahaut, S., Hartke, A., Giard, J.C., Auffray, Y. (1997) Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection and changes in protein synthesis. Appl. Environ. Microbiol. 63, 812814.
  • [41]
    Kim, W.S., Park, J.H., Ren, J., Su, P., Dunn, N.W. (2001) Survival response and rearrangement of plasmid DNA of Lactococcus lactis during long-term starvation. Appl. Environ. Microbiol. 67, 45944602.
  • [42]
    Koga, T., Sakamoto, F., Yamoto, A., Takumi, K. (1999) Acid adaptation induces cross-protection against some environmental stresses in Vibrio parahaemolyticus. J. Gen. Appl. Microbiol. 45, 155161.
  • [43]
    Koga, T., Katagiri, T., Hori, H., Takumi, K. (2002) Alkaline adaptation induces cross-protection against some environmental stresses and morphological change in Vibrio parahaemolyticus. Microbiol. Res. 157, 17.
  • [44]
    Leverrier, P., Dimova, D., Pichereau, V., Auffray, Y., Boyaval, P., Jan, G. (2003) Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl. Environ. Microbiol. 69, 38093818.
  • [45]
    Valdez, G.F., Martos, G., Taranto, M.P., Lorca, G.L., Oliver, G., Ruiz Holgado, A.P. (1996) Influence of bile on β-galactosidase activity and cell viability of Lactobacillus reuteri when subjected to freeze-drying. J. Dairy Sci. 80, 19551958.
  • [46]
    Fujisawa, T., Mori, M. (1996) Influence of bile salts on β-glucuronidase activity of intestinal bacteria. Lett. Appl. Microbiol. 22, 271274.
  • [47]
    Noh, D.O., Gilliland, S.E. (1993) Influence of bile on cellular integrity and β-galactosidase activity of Lactobacillus acidoplilus. J. Dairy Sci. 76, 12531259.
  • [48]
    Coleman, R., Lowe, P.J., Billington, D. (1980) Membrane lipid composition and susceptibility to bile salt damage. Biochim. Biophys. Acta 588, 294300.
  • [49]
    Heuman, D.M., Bajaj, R.S., Lin, Q. (1996) Adsorption of mixtures of bile salt taurine conjugates to lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. J. Lipid Res. 37, 562573.
  • [50]
    Zarate, G., Gonzalez, S., Chaia, A.P., Oliver, G. (2000) Effect of bile on the β-galactosidase activity of dairy propionibacteria. Lait 80, 267276.
  • [51]
    Gomez-Zavaglia, A., Kociubinski, G., Perez, P., Disalvo, E., De Antonio, G. (2002) Effect of bile on the lipid composition and surface properties of bifidobacteria. J. Appl. Microbiol. 93, 794799.
  • [52]
    Waar, K., van der Mei, H.C., Harmsen, J.M., Degener, J.E., Busscher, H.J. (2002) Adhesion to bile drain materials and physicochemical surface properties of Enterococcus faecalis strains grown in the presence of bile. Appl. Environ. Microbiol. 68, 38553858.
  • [53]
    Hofmann, M., Schumann, C., Zimmer, G., Henzel, K., Locher, U., Leuschner, U. (2001) LUV's lipid composition modulates diffusion of bile acids. Chem. Phys. Lipids 110, 165171.
  • [54]
    Schubert, R., Jaroni, H., Schoelmerich, J., Schmidt, K.H. (1983) Studies on the mechanism of bile salt-induced liposomal membrane damage. Digestion 28, 181190.
  • [55]
    Cabral, D.J., Small, D.M., Lilly, H.S., Hamilton, J.A. (1987) Transbilayer movement of bile acids in model membranes. Biochemistry 26, 18011804.
  • [56]
    Grill, J.P., Cayuela, C., Antoine, J.M., Schneider, F. (2000) Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance. J. Appl. Microbiol. 89, 553563.
  • [57]
    Legrand-Defretin, V., Juste, C., Henry, R., Corring, T. (1991) Ion-pair high-performance liquid chromatography of bile salt conjugates: application to pig bile. Lipids 26, 578583.
  • [58]
    Thornton, G.M. (1996) Probiotic bacteria: selection of lactobacillus and bifidobacterium strains from the healthy human gastrointestinal tract; characterisation of a novel lactobacillus-derived antibacterial protein. PhD thesis. National University of Ireland, University College Cork, Ireland.
  • [59]
    Chou, C.C., Cheng, S.J. (2000) Recovery of low-temperature stressed E. coli 0157:H7 and its susceptibility to crystal violet, bile salt, sodium chloride and ethanol. Int. J. Food Microbiol. 61, 127136.
  • [60]
    King, T., Ferenci, T., Szabo, E.A. (2002) The effect of growth atmosphere on the ability of Listeria monocytogenes to survive exposure to acid, proteolytic enzymes and bile salts. Int. J. Food Microbiol. 84, 133143.
  • [61]
    Fernandez Murga, M.L., Bernick, D., De Valdez, G.F., Disalvo, A.E. (1999) Permeability and stability properties of membranes formed by lipids extracted from Lactobacillus acidophilus grown at different temperatures. Arch. Biochem. Biophys. 364, 115121.
  • [62]
    Kimoto, H., Ohmomo, S., Okamoto, T. (2002) Enhancement of bile tolerance in Lactococci by Tween 80. J. Appl. Micro. 92, 4146.
  • [63]
    Chou, L., Weimer, B. (1999) Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82, 2331.
  • [64]
    Bernstein, C., Bernstein, H., Payne, C.M., Beard, S.E., Schneider, J. (1999) Bile salt activation of stress response promoters in Escherichia coli. Curr. Microbiol. 39, 6872.
  • [65]
    Bernstein, H., Payne, C.M., Bernstein, C., Schneider, J., Beard, S.E., Crowley, C.L. (1999) Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol. Lett. 108, 3746.
  • [66]
    Kandell, R.L., Bernstein, C. (1991) Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr. Cancer 16, 227238.
  • [67]
    Payne, C.M., Crowley, C., Washo, D., Bernstein, H., Bernstein, C., Briel, M. (1998) The stress–response proteins poly(ADP-ribose) polymerase and NF-κB protect against bile salt-induced apoptosis. Cell Death Diff. 5, 623636.
  • [68]
    Gahan, C.G.M., O'Mahony, J., Hill, C. (2001) Characterization of the groESL operon in Listeria monocytogenes: utilization of two reporter systems (gfp and hly) for evaluating in vivo expression. Infect. Immun. 69, 39243932.
  • [69]
    Rincé, A., Flahaut, S., Auffray, Y. (2000) Identification of general stress genes in Enterococcus faecalis. Int. J. Food Microbiol. 55, 8791.
  • [70]
    Schmidt, G., Zink, R. (2000) Basic features of the bile stress response in three species of bifidobacteria: B. longum, B. adolescentis, and B. breve. Int. J. Food Microbiol. 55, 4145.
  • [71]
    Lechner, S., Muller-Ladner, U., Schlottmann, K., Jung, B., McClelland, M., Ruschoff, J., Welsh, J., Scholmerich, J., Kullmann, F. (2002) Bile acids mimic oxidative stress induced upregulation of thioredoxin reductase in colon cancer cell lines. Carcinogenesis 23, 12811288.
  • [72]
    Sokol, R.J., Winklhofer-Roob, B.M., Devereaux, M.W. J.M. McKim Jr. (1995) Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology 109, 12491256.
  • [73]
    Rajagopalan, N., Lindenbaum, S. (1982) The binding of Ca2+ to taurine and glycine-conjugated bile salt micelles. Biochem. Biophys. Acta 711, 6674.
  • [74]
    Sanyal, A., Shiffman, M.L., Hirsch, J.I., Moore, E.W. (1991) Premicellar taurocholate enhances ferrous iron uptake from all regions of rat small intestine. Gastroenterology 101, 382388.
  • [75]
    Bridson, E.Y., Ed. The Oxoid Manual. 1995. Unipath Ltd, Basingstoke, England
  • [76]
    Van Velkinburgh, J.C., Gunn, J.S. (1999) PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect. Immun. 67, 16141622.
  • [77]
    Prouty, A.M., Schwesinger, W.H., Gunn, J.S. (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect. Immun. 70, 26402649.
  • [78]
    Brook, I. (1989) Aerobic and anaerobic microbiology of biliary tract disease. J. Clin. Microbiol. 27, 23732375.
  • [79]
    Cable, C.S., Rehbun, W.C., Fortier, L.A. (1997) Cholelithiasis and cholecystitis in a dairy cow. J. Am. Vet. Med. Assoc. 211, 899900.
  • [80]
    Carpenter, H.A. (1998) Bacterial and parasitic cholangastrointestinal tractis. Mayo Clin. Proc. 73, 473478.
  • [81]
    Flores, C., Maguilnik, I., Hadlich, E., Goldani, L.Z. (2003) Microbiology of choledochal bile in patients with choledocholithiasis admitted to a tertiary hospital. J. Gastroenterol. Hepatol. 18, 333336.
  • [82]
    Onyekaba, C.O., Njoku, H.O. (1986) Bacteria and helminth isolated from bile and faeces of zebu cattle slaughtered for human consumption in the Niger Delta areas of Nigeria. Ann. Trop. Med. Parasitol. 80, 421424.
  • [83]
    Gänzle, M.G., Hertel, C., van der Vossen, J.M.B.M., Hammes, W.P. (1999) Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. Int. J. Food Microbiol. 48, 2135.
  • [84]
    Fox, J.G., Yan, L.L., Dewhirst, F.E., Paster, B.J., Shames, B., Murphy, J,C., Hayward, A., Belcher, J.C., Mendes, E.N. (1995) Helicobacter pilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J. Clin. Microbiol. 33, 445454.
  • [85]
    Hirai, Y. (1999) The interaction of bile acids and Helicobacter pylori. Editorial. J. Gastroenterol. 34, 653654.
  • [86]
    Arnaout, A.H., Abbas, S.H., Shousha, S. (1990) Helicobacter pylori is not identified in areas of gastric metaplasia of gallbladder. J. Pathol. 160, 333334.
  • [87]
    Hänninen, M.L. (1991) Sensitivity of Helicobacter pylori to different bile salts. Eur. J. Clin. Microbiol. Infect. Dis. 10, 515518.
  • [88]
    Darling, W.M., Peel, R.N., Skirrow, M.B., Mulira, A.E. Campylobacter cholecystitis. Lancet. i, 1979. 1302
  • [89]
    Drion, S., Wahlen, C., Taziaux, P. (1988) Isolation of Campylobacter jejuni from the bile of a cholecystic patient. J. Clin. Microbiol. 26, 21932194.
  • [90]
    Gerritsen van der Hoop, A., Veringa, E.M. Cholecystitis caused by Campylobacter jejuni. Clin. Infect. Dis. 17, 1993. 133
  • [91]
    Hänninen, M.L. (1982) characterization of Campylobacter jejuni coli isolated from different sources. Acta Veterinaria Scandinavica 23, 8898.
  • [92]
    Misawa, N., Ohnishi, T., Uchida, K., Nakai, M., Nasu, T., Itoh, K., Takahashi, E. (1996) Experimental hepatitis induced by Campylobacter jejuni infection in Japanese quail (Coturnix coturnix japonica). J. Vet. Med. Sci. 58, 205210.
  • [93]
    Takatsu, M., Ichiyama, S., Nada, T., Iinuma, Y., Toyoda, H., Fukuda, Y., Nakashima, N. (1997) Campylobacter fetus subsp. fetus cholecystitis in a patient with advanced hepatocellular carcinoma. Scand. J. Infect. Dis. 29, 197198.
  • [94]
    Dunne, C., O’ Mahony, L., Murphy, L., Thorton, G., Morrissey, D., O’ Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O’ Sullivan, G.C., Shanahan, F., Collins, J.K. (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr. 73, 386S392S.
  • [95]
    Fuller, R. (1989) A review: probiotics in man and animals. J. Appl. Bacteriol. 66, 365378.
  • [96]
    Gilliland, S.E., Stanley, T.E., Bush, L.J. (1984) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67, 30453051.
  • [97]
    Goldin, B.R., Gorbach, S.L. (1992) Probiotics for humans. In: Probiotics, the Scientific Basis (Fuller, R., Ed.), pp.355–376 Chapman and Hall, London.
  • [98]
    Klaenhammer, T.R., Kullen, M.J. (1999) Selection and design of probiotics. Int. J. Food Microbiol. 50, 4557.
  • [99]
    Lee, Y.K., Salminen, S. (1995) The coming age of probiotics. Trends Food Sci. Technol. 6, 241245.
  • [100]
    Margolles, A., Garcia, L., Sanchez, B., Guimonde, M., De Los Reyes-Gavilan, C.G. (2002) Characterisation of a Bifidobacterium strain with acquired resistance to cholate – a preliminary study. Int. J. Food Microbiol. 82, 191198.
  • [101]
    Hyronimus, B., le Marrec, C., Hadj Sassi, A., Deschamps, A. (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61, 193197.
  • [102]
    Jacobsen, C.N., Rosenfeldt Nielsen, V., Hayford, A.E., Møller, P.L., Michaelsen, K.F., Paerregaard, A., Sandström, B., Tvede, M., Jakobsen, M. (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65, 49494956.
  • [103]
    Kim, W.S., Park, J.H., Tandianus, J.E., Ren, J., Su, P., Dunn, N.W. (2002) A distinct physiological state of Lactococcus lactis cells that confers survival against a direct and prolonged exposure to severe stresses. FEMS Microbiol. Lett. 212, 203208.
  • [104]
    Kimoto, H., Kurisaki, J., Tsuji, N.M., Okmomo, S., Okamoto, T. (1999) Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Letts. Appl. Microbiol. 29, 313316.
  • [105]
    Kimoto, H., Ohmomo, S., Nomura, M., Kobayashi, M., Okamoto, T. (2000) In vitro studies on probiotic properties of lactococci. Milchwissenschaft 55, 245249.
  • [106]
    Chateau, N., Deschamps, A.M., Hadj Sassi, A. (1994) Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Letts. Appl. Microbiol. 18, 4244.
  • [107]
    Buck, L.M., Gilliland, S.E. (1994) Comparisons of freshly isolated strains of Lactobacillus acidophilus of human intestinal origin for ability to assimilate cholesterol during growth. J. Dairy Sci. 77, 29252933.
  • [108]
    Gopal, A., Shah, N.P., Roginski, H. (1996) Bile tolerance, taurocholate deconjugation and cholesterol removal by Lactobacillus acidophilus and Bifidobacterium spp. Milchwissenschaft 51, 619623.
  • [109]
    Gupta, P.K., Mital, B.K., Garg, S.K. (1996) Characterization of Lactobacillus acidophilus strains for use as dietary adjunct. Int. J. Food Microbiol. 29, 105109.
  • [110]
    Walker, D.K., Gilliland, S.E. (1993) Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci. 76, 956961.
  • [111]
    Ibrahim, S.A., Bezhorovainy, A. (1993) Survival of bifidobacteria in the presence of bile salt. J. Sci. Food Agric. 62, 351354.
  • [112]
    Clark, P.A., Martin, J.H. (1994) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods. III. Tolerance to simulated bile concentrations of human small intestines. Cult. Dairy Prod. J. 29, 1821.
  • [113]
    Allerberger, F., Langer, B., Hirsch, O., Dierich, M.P., Seeliger, H.P. (1989) Listeria monocytogenes cholecystitis. Z. Gastroenterol. 27, 145147.
  • [114]
    Briones, V., Blanco, M.M., Marco, A., Prats, N., Fernandez-Garayzabal, J.F., Suarez, G., Domingo, M., Dominguez, L. (1992) Biliary excretion as possible origin of Listeria monocytogenes in fecal carriers. Am. J. Vet. Res. 53, 191193.
  • [115]
    Hardy, J., Francis, K.P., DeBoer, M., Chu, P., Gibbs, K., Contag, C.H. (2004) Extracellular replication of Listeria monocytogenes in the murine gallbladder. Science 303, 851853.
  • [116]
    Marco, A.J., Altimira, J., Prats, N., López, S., Dominguez, L., Domingo, M., Briones, V. (1997) Penetration of Listeria monocytogenes in mice infected by the oral route. Microb. Pathog. 23, 255263.
  • [117]
    Olier, M., Rousseaux, S., Piveteau, P., Lemaître, J.P., Rousset, A., Guzzo, J. (2004) Screening of glutamate decarboxylase activity and bile salt resistance of human asymptomatic carriage, clinical, food, and environmental isolates of Listeria monocytogenes. Int. J. Food Microbiol. 93, 8799.
  • [118]
    Saito, T., Senda, K., Takakura, S., Fujihara, N., Kudo, T., Iinuma, Y., Kiuchi, T., Tanimoto, M., Ichiyama, S. (2003) Biliary bacteria in lung related liver transplant recipients: microbiology and rapid detection system using flow cytometry. Clin. Chem. Lab. Med. 41, 159163.
  • [119]
    Sakaguchi, Y., Murata, K., Kimura, M. (1983) Clostridium perfringens and other anaerobes isolated from bile. J. Clin. Pathol. 36, 345349.
  • [120]
    Shimakawa, Y., Matsubara, S., Yuki, N., Ikeda, M., Ishikawa, F. (2003) Evaluation of Bifidobacterium breve Yakult-fermented soymilk as a probiotic food. Int. J. Food Microbiol. 81, 131136.
  • [121]
    Sugano, M., Goto, S., Yamada, Y., Yoshida, K., Hashimoto, Y., Matsuo, T., Kimoto, M. (1990) Cholesterol-lowering activity of various undigested fractions of soybean protein in rats. J. Nutr. 120, 977985.
  • [122]
    Hou, R.C., Lin, M.Y., Wang, M.M., Tzen, J.T. (2003) Increase of viability of entrapped cells of Lactobacillus delbrueckii spp. bulgaricus in artifical sesame oil emulsions. J. Dairy Sci. 86, 424428.
  • [123]
    Bunning, V.K., Crawford, R.G., Tierney, J.T., Peeler, J.T. (1990) Thermotolerance of Listeria monocytogenes and Salmonella typhimurium after sublethal heat shock. Appl. Environ. Microbiol. 56, 32163219.
  • [124]
    O’ Driscoll, B., Gahan, C.G.M., Hill, C. (1996) Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microbiol. 62, 16931698.
  • [125]
    Jenkins, D.E., Schultz, J.E., Matin, A. (1988) Starvation induced cross-protection against heat or H2O2 challenge in Escherichia coli. J. Bacteriol. 170, 39103914.
  • [126]
    Leyer, G.J., Johnson, E.A. (1993) Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl. Environ. Microbiol. 59, 18421847.
  • [127]
    Lou, Y., Yousef, A.E. (1996) Resistance of Listeria monocytogenes to heat after adaptation to environmental stresses. J. Food Prot. 59, 465471.
  • [128]
    le Maire, M., Champeil, P., Møller, J.V. (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508, 86111.
  • [129]
    Leverrier, P., Vissers, J.P.C., Rouault, A., Boyaval, P., Jan, G. (2004) Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch. Microbiol. 181, 215230.
  • [130]
    Huisman, G.W., Siegele, D.A., Zambrano, M.M., Kolter, R. (1996) Morphological and physiological changes during stationary phase. In: Escherichia coli and Salmonella. Cellular and Molecular Biology (Neidhardt, F.C., Ed.), pp.1672–1682 ASM Press, Washington, DC.
  • [131]
    Russell, N.J., Evans, R.I., Ter Steeg, P.F., Hellemons, J., Verheul, A., Abee, T. (1995) Membranes as a target for stress adaptation. Int. J. Food Microbiol. 28, 255261.
  • [132]
    Slonczewski, J.L., Foster, J.W. (1996) pH-regulated genes and survival at extreme pH. In: Escherichia coli and Salmonella. Cellular and Molecular Biology (Neidhardt, F.C., Ed.), pp.1539–1549 ASM Press, Washington, DC.
  • [133]
    Van Schaik, W., Gahan, C.G.M., Hill, C. (1999) Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147. J. Food Prot. 62, 536539.
  • [134]
    Machado, M.C., López, C.S., Heras, H., Rivas, E.A. (2004) Osmotic response in Lactobacillus casei ATCC393: biochemical and biophysical characteristics of the membrane. Arch. Biochem. Biophys. 422, 6170.
  • [135]
    Lacroix, F.J., Ayoyne, C., Pinault, C., Popoff, M.Y., Pardon, P. (1995) Salmonella typhimurium TnphoA mutants with increased sensitivity to biological and chemical detergents. Res. Microbiol. 146, 659670.
  • [136]
    Prouty, A.M., Van Velkinburgh, J.C., Gunn, J.S. (2002) Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J. Bacteriol. 184, 12701276.
  • [137]
    Gunn, J.S. (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2, 907913.
  • [138]
    Lacroix, F.J., Cloeckaert, A., Grepinet, O., Pinault, C., Popoff, M.Y., Waxin, H., Pardon, P. (1996) Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and role in murine infection. FEMS Microbiol. Lett. 135, 161167.
  • [139]
    Nikaido, H., Basina, V., Nguyen, V., Rosenberg, E.Y. (1998) Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta lactam antibiotics containing lipophilic side chains. J. Bacteriol. 180, 46864692.
  • [140]
    Prouty, A.M., Brodsky, I.E., Falkow, S., Gunn, J.S. (2004) Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150, 775783.
  • [141]
    Paulsen, I.T., Park, J.M., Choi, P.S., Saier, M.H. (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol. Lett. 156, 18.
  • [142]
    Ramos-Morales, F., Prieto, A.I., Beuzón, C.R., Holden, D.W., Casadesús, J. (2003) Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. J. Bacteriol. 185, 53285332.
  • [143]
    Heithoff, D.M., Enioutina, E.Y., Daynes, R.A., Sinsheimer, R.L., Low, D.A., Mahan, M.J. (2001) Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect. Immun. 69, 67256730.
  • [144]
    Sulavik, M.C., Dazer, M., Miller, P.F. (1997) The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. J. Bacteriol. 179, 18571866.
  • [145]
    Prouty, A.M., Brodsky, I.E., Manos, J., Belas, R., Falkow, S., Gunn, J.S. (2004) Transcriptional regulation of Salmonella enterica serovar Typhimurium genes by bile. FEMS Immunol. Med. Microbiol. 41, 177185.
  • [146]
    Thanassi, D.G., Cheng, L.W., Nikaido, H. (1997) Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179, 25122518.
  • [147]
    Picken, R.N., Beacham, I.R. (1977) Bacteriophage-resistant mutants of Escherichia coli K-12. Location of receptors within the lipopolysaccharide. J. Gen. Microbiol. 102, 305318.
  • [148]
    Baranova, N., Nikaido, H. (2002) The BaeSR two-component system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J. Bacteriol. 184, 41684176.
  • [149]
    Nesper, J., Lauriano, C.M., Klose, K.E., Kapfjammer, D., Kraiss, A., Reidl, J. (2001) Characterization of Vibrio cholerae 01 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect. Immun. 69, 435445.
  • [150]
    Nesper, J., Schild, S., Lauriano, C.M., Kraiss, A., Klose, K.E., Reidl, J. (2002) Role of Vibrio cholerae 0139 surface polysaccharides in intestinal colonisation. Infect. Immun. 70, 59905996.
  • [151]
    Colmer, J.A., Fralick, J.A., Hamood, A.N. (1998) Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae. Mol. Microbiol. 27, 6372.
  • [152]
    Bina, J.E., Mekalanos, J.J. (2001) Vibrio cholerae tolC is required for bile resistance and colonization. Infect. Immun. 69, 46814685.
  • [153]
    Provenzano, D., Klose, K.E. (2000) Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression and intestinal colonization. Proc. Natl. Acad. Sci. USA 97, 1022010224.
  • [154]
    Wibbenmeyer, J.A., Provenzano, D., Laudry, C.F., Klose, K.E., Delcour, A.H. (2002) Vibrio cholerae OmpU and OmpT porins are differentially affected by bile. Infect. Immun. 70, 121126.
  • [155]
    Provenzano, D., Lauriano, C.M., Klose, K.E. (2001) Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J. Bacteriol. 183, 36523662.
  • [156]
    Lin, J., Overbye Michel, L., Zhang, Q. (2002) CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 46, 21242131.
  • [157]
    Lin, J., Sahin, O., Overbye Michel, L., Zhang, Q. (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect. Immun. 71, 42504259.
  • [158]
    Rincé, A., Giard, J.C., Pichereau, V., Flahaut, S., Auffray, Y. (2001) Identification and characterization of gsp65, an organic hydroperoxide resistance (ohr) gene encoding a general stress protein in Enterococcus faecalis. J. Bacteriol. 183, 14821489.
  • [159]
    Rincé, A., le Breton, Y., Verneuil, N., Giard, J.C. Hartke Auffray, Y. (2003) Physiological and molecular aspects of bile salt response in Enterococcus faecalis. Int. J. Food Microbiol. 88, 207213.
  • [160]
    le Breton, Y., Maze, A., Hartke, A., Lemarinier, S., Auffray, Y., Rincé, A. (2002) Isolation and characterization of bile salts-sensitive mutants of Enterococcus faecalis. Curr. Microbiol. 45, 434439.
  • [161]
    Phan-Thanh, L., Gormon, T. (1997) Stress proteins in Listeria monocytogenes. Electrophoresis 18, 14641471.
  • [162]
    Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., the European Listeria Genome Consortium, Buchreiser, C., Glaser, P. and Cossart, P. (2002) Listeria monocytogenes bile salt hydrolase is a prfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45, 1095–1106.
  • [163]
    Begley, M. (2003) Physiology and genetics of bile tolerance in Listeria monocytogenes. PhD thesis. National University of Ireland, University College Cork, Cork, Ireland.
  • [164]
    Begley, M., Hill, C., Gahan, C.G.M. (2003) Identification and disruption of btlA, a locus involved in bile tolerance and general stress resistance in Listeria monocytogenes. FEMS Microbiol. Lett. 218, 3138.
  • [165]
    Bron, P.A. (2003) The molecular response of Lactobacillus plantarum to intestinal passage and conditions. PhD thesis. Wageningen Centre for Food Sciences, Wageningen, The Netherlands.
  • [166]
    Brannigan, J.A., Dodson, G.G., Doue, S.H., Hewitt, L., McVey, C.E., Wilson, K.S. (2000) Structural studies of penicillin acylase. Appl. Biochem. Biotechnol. 88, 313319.
  • [167]
    Suresh, C.G., Pundle, A.V., Siva Raman, H., Rao, K.N., Brannigan, J.A., McVey, C.E., Verma, C.S., Dauter, Z., Dodson, E.J., Dodson, G.G. (1999) Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nature. Struct. Biol. 6, 414416.
  • [168]
    Kovacikova, G., Lin, W., Skorupsk, K. (2003) The virulence activator AphA links quorum sensing to pathogenesis and physiology in Vibrio cholerae by repressing the expression of a penicillin amidase gene on the small chromosome. J. Bacteriol. 185, 48254836.
  • [169]
    Merino, E., Balbás, P., Recillas, F., Becerril, B., Valle, F., Bolivar, F. (1992) Carbon regulation and the role in nature of the Escherichia coli penicillin acylase (pac) gene. Mol. Microbiol. 6, 21752182.
  • [170]
    Corzo, G., Gilliland, S.E. (1999) Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J. Dairy Sci. 82, 472480.
  • [171]
    Corzo, G., Gilliland, S.E. (1999) Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. J. Dairy Sci. 82, 466471.
  • [172]
    Gilliland, S.E., Speck, M.J. (1977) Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33, 1518.
  • [173]
    Gopal-Srivastava, R., Hylemon, P.B. (1988) Purification and characterization of bile salt hydrolase from Clostridium perfringens. J. Lipid Res. 29, 10791085.
  • [174]
    Grill, J.P., Maginot-Durr, C., Schneider, F., Ballongue, J. (1995) Bifidobacteria and probiotic effects: action of Bifidobacterium species on conjugated bile salts. Curr. Microbiol. 31, 2327.
  • [175]
    Kawamoto, K., Horibe, I., Uchida, K. (1989) Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from Bacteroides vulgatus. J. Biochem. 106, 10491053.
  • [176]
    Masuda, N. (1981) Deconjugation of bile salts by Bacteroides and Clostridium. Microbiol. Immunol. 25, 111.
  • [177]
    Stellwag, E.J., Hylemon, P.B. (1976) Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim. Biophys. Acta 452, 165176.
  • [178]
    Tanaka, H., Hashiba, H., Kok, J., Mierau, I. (2000) Bile salt hydrolase of Bifidobacterium longum– biochemical and genetic characterization. Appl. Environ. Microbiol. 66, 25022512.
  • [179]
    Taranto, M.P., Font de Valdez, G. (1999) Localization and primary characterization of bile salt hydrolase from Lactobacillus reuteri. Biotechnol. Lett. 21, 935938.
  • [180]
    Kishinaka, M., Umeda, A., Kuroki, S. (1994) High concentrations of conjugated bile acids inhibit bacterial growth of Clostridium perfringens and induce its extracellular cholylglycine hydrolase. Steroids 59, 485489.
  • [181]
    Lundeen, S.G., Savage, D.C. (1992) Multiple forms of bile salt hydrolase from Lactobacillus sp. strain 100–100. J. Bacteriol. 174, 72177220.
  • [182]
    Coleman, J.P., Hudson, L.L. (1995) Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61, 25142520.
  • [183]
    Bateup, J.M., Mc Connell, M.A., Jenkinson, H.F., Tannock, G.W. (1995) Comparison of Lactobacillus strains with respect to bile salt hydrolase activity, colonisation of the gastrointestinal tract, and growth rate of the murine host. Appl. Environ. Microbiol. 61, 11471149.
  • [184]
    Dashkevicz, M.P., Feighner, S.D. (1989) Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Environ. Microbiol. 55, 1116.
  • [185]
    De Boever, P., Verstraete, W. (1999) Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J. Appl. Microbiol. 87, 345352.
  • [186]
    Elkins, C.A., Moser, S.A., Savage, D.C. (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonni 100–100 and other Lactobacillus species. Microbiology 147, 34033412.
  • [187]
    Elkins, E.A., Savage, D.C. (1998) Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonni 100–100. J. Bacteriol. 180, 43444349.
  • [188]
    Tannock, G.W., Dashkevicz, M.P., Feighner, S.D. (1989) Lactobacilli and bile salt hydrolase in the murine intestinal tract. Appl. Environ. Microbiol. 55, 18481851.
  • [189]
    Grill, J.P., Perrin, S., Schneider, F. (2000) Bile toxicity to some bifidobacteria strains: role of conjugated bile salt hydrolase and pH. Can. J. Microbiol. 46, 878884.
  • [190]
    Franz, C.M.A.P., Specht, I., Haberer, P., Holzapfel, W.H. (2001) Bile salt hydrolase activity of Enterococci isolated from food: screening and quantitative determination. J. Food Prot. 64, 725729.
  • [191]
    Knarreborg, A., Engberg, R.M., Jensen, S.K., Jensen, B.B. (2002) Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Appl. Environ. Microbiol. 68, 64256428.
  • [192]
    Van Eldere, J., Celis, P., De Pauw, G., Lesaffre, E., Eyssen, H. (1996) Tauroconjugation of cholic acid stimulates 7α-dehydroxylation by fecal bacteria. Appl. Environ. Microbiol. 62, 656661.
  • [193]
    Huijghebaert, S.M., Mertens, J.A., Eyssen, H.J. (1982) Isolation of a bile salt sulfatase-producing Clostridium strain from rat intestinal microflora. Appl. Environ. Microbiol. 43, 185192.
  • [194]
    Dambekodi, P.C., Gilliland, S.E. (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81, 18181824.
  • [195]
    Taranto, M.P., Fernandez Murga, M.L., Lorca, G., De Valdez, G.F. (2003) Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J. Appl. Microbiol. 95, 8691.
  • [196]
    Taranto, M.P., Sesma, F., Ruiz Holgado, A.P., Valdez, G.F. (1997) Bile salt hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri. Biotechnol. Lett. 19, 845847.
  • [197]
    Boggs, J.M. (1987) Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochem. Biophys. Acta 906, 353404.
  • [198]
    Peschel, A., Jack, R.W., Otto, M., Collins, L.V., Staubitz, P., Nicholson, G., Kalbacher, H., Nieuwenhuizen, W.F., Jung, G., Tarkowski, A., Van Kessel, K.P.M., Van Strijp, J.A.G. (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193, 10671076.
  • [199]
    Wilson, C.L., Ouellette, A.J., Satchell, D.P., Ayabe, T., Lopez-Boado, Y.S., Stratmn, J.L., Hultgren, S.J., Matrisian, L.M., Parks, W.C. (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113117.
  • [200]
    Pridmore, R.D., Berger, B., Desiere, F., Vilanova, D., Barretto, C., Pittet, A.-C., Zwahlen, M.-C., Rouvet, M., Altermann, E., Barrangou, R., Mollet, B., Mercenier, A., Klaenhammer, T., Arigoni, F., Schell, M.A. (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonni NCC533. Proc. Natl. Acad. Sci. 101, 25122517.
  • [201]
    Taranto, M.P., Pesce de Ruiz Holgado, A., Font de Valdez, G. (1997) Suggested criteria for selecting bile resistant Enterococcus faecium strains for probiotic purposes. Microbiologie-Aliments-Nutrition 15, 36.
  • [202]
    USMAN (The United Graduate School of Agricultural Science) (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci. 82, 243248.
  • [203]
    Moser, S.A., Savage, D.C. (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in Lactobacilli. Appl. Environ. Microbiol. 67, 34763480.
  • [204]
    Ahn, Y.T., Kim, G.B., Lim, Y.S., Baek, Y.J., Kim, Y.U. (2003) Deconjugation of bile salts by Lactobacillus acidophilus isolates. Int. Dairy J. 13, 303311.
  • [205]
    Tanaka, H., Doesburg, K., Iwasaki, T., Mierau, I. (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82, 25302535.
  • [206]
    Kleerebezem, M., Boekhorst, J., Van Kranenburg, R., Molenaar, D., Kuipers, O.P., Leer, R., Tarchini, R., Peters, S.A., Sandbrink, H.M., Fiers, M.W., Stiekema, W., Lankhorst, R.M., Bron, P.A., Hoffer, S.M., Groot, M.N., Kerkhoven, R., De Vries, M., Ursing, B., De Vos, W.M., Siezen, R.J. (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. 100, 19901995.
  • [207]
    De Smet, I., Van Hoorde, L., De Sayer, N., Vande Woestyne, M., Verstraete, W. (1994) In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb. Ecol. Health Dis. 7, 315329.
  • [208]
    Feighner, S.D., Dashkevicz, M.P. (1987) Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Appl. Environ. Microbiol. 53, 331336.
  • [209]
    Feighner, S.D., Dashkevicz, M.P. (1988) Effect of dietary carbohydrates on bacterial cholyltaurine hydrolase in poultry intestinal homogenates. Appl. Environ. Microbiol. 54, 337342.
  • [210]
    Chikai, T., Nakao, H., Uchida, K. (1987) Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats. Lipids 22, 669671.
  • [211]
    De Smet, I., De Boever, P., Verstraete, W. (1998) Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79, 185194.
  • [212]
    Du Toit, M., Franz, C.M., Dicks, L.M., Schillinger, U., Harberer, P., Warlies, B., Ahrens, F., Holzapfel, W.H. (1998) Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int. J. Food Microbiol. 40, 93104.
  • [213]
    Pereira, D.I.A., Mc Cartney, A.L., Gibson, G.R. (2003) An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl. Environ. Microbiol. 69, 47434752.
  • [214]
    Tannock, G.W. (1995) Microecology of the gastrointestinal tract in relation to lactic acid bacteria. Int. Dairy J. 5, 10591070.
  • [215]
    Hylemon, P.B., Glass, T.L. (1983) Biotransformation of bile acids and cholesterol by intestinal microflora. In: Human Intestinal Microflora in Health and Disease (Hentges, D.J., Ed.), pp.189–213 Academic Press, New York.
  • [216]
    Dawson, J.A., Mallonee, D.H., Björkhem, I., Hylemon, P.B. (1996) Expression and characterization of a C24 bile acid 7α-dehydratase from Eubacterium sp. strain VPI 12708 in Escherichia coli. J. Lipid Res. 37, 12581267.
  • [217]
    Ye, G., Mallonee, D.H., Wells, J.E., Bjorkhem, I., Hylemon, P.B. (1999) The bile-acid inducible baiF gene from Eubacterium sp. strain VPI 12708 a bile acid-coenzyme A hydrolase. J. Lipid Res. 40, 1723.
  • [218]
    Hussaini, S.H., Pereira, S.P., Murphy, G.M., Dowling, R.W. (1995) Deoxycholic acid influences cholesterol solubilization and microcrystal nucleation time in gallbladder bile. Hepatology 22, 17351744.
  • [219]
    Mower, H.F., Ray, R.M., Schoff, R., Stemmerman, G.N., Nomura, A., Glober, G.A., Kamiyama, S., Shimada, A., Yamakama, H. (1979) Fecal bile acids in two Japanese populations with different colon cancer risks. Cancer Res. 39, 328331.
  • [220]
    Shoda, J., He, B.F., Tanaka, N., Matsuzaki, Y., Osuga, T., Yamamori, S., Miyazaki, H., Sjovall, J. (1995) Increase of deoxycholic acid in supersaturated bile of patients with cholesterol gallstone disease and its correlation with de novo synthesis of cholesterol and bile acids in the liver, gallbladder emptying, and small intestine transit. Hepatology 21, 12911302.
  • [221]
    Parkinson, J.S., Kofoid, E.C. (1992) Communication modules in bacterial signalling proteins. Annu. Rev. Genetics 26, 71112.
  • [222]
    De Wulf, P., McGuire, A.M., Liu, X., Lin, E.C. (2002) Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J. Biol. Chem. 277, 2665226661.
  • [223]
    DiGiuseppe, P.A., Silhavy, T.J. (2003) Signal detection and target gene induction by the CpxRA two-component system. J. Bacteriol. 185, 24322440.
  • [224]
    Balke, V.L., Gralla, J.D. (1987) Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J. Bacteriol. 169, 44994506.
  • [225]
    Dorman, C.J. (1991) DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect. Immun. 59, 745749.
  • [226]
    Dorman, C.J. (1995) DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. Microbiology 141, 12711280.
  • [227]
    Dorman, C.J. (1996) Flexible response: DNA supercoiling, transcription and bacterial adaptation to environmental stress. Trends Microbiol. 4, 214216.
  • [228]
    Drilca, K. (1992) Control of bacterial DNA supercoiling. Mol. Microbiol. 6, 425433.
  • [229]
    Marshall, D.G., Bowe, F., Hale, C., Dougan, G., Dorman, C.J. (2000) DNA topology and adaptation of Salmonella typhimurium to an intracellular environment. Phil. Trans. R. Soc. London B 355, 565574.
  • [230]
    Vigh, L., Maresca, B., Harwood, J.L. (1998) Does the membrane's physical state control the expression of heat shock and other genes. Trends Biochem. Sci. 23, 369374.
  • [231]
    Lopez-Garcia, P., Forterre, P. (2000) DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. BioEssays 22, 738746.
  • [232]
    Allen, K.J., Griffiths, M.W. (2001) Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaAσ28 promoter. FEMS Microbiol. Lett. 205, 4348.
  • [233]
    Cheville, A.M., Arnold, K.W., Buchreiser, C., Cheng, C.M., Casper, C.W. (1996) rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl. Environ. Microbiol. 62, 18221824.
  • [234]
    Ferreira, A., O’ Byrne, C.P., Boor, K.J. (2001) Role of σB in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl. Environ. Microbiol. 67, 44544457.
  • [235]
    Loewen, P.C., Hengge-Aronis, R. (1994) The role of sigma factor sigma S (KatF) in bacterial global regulation. Annu. Rev. Microbiol. 48, 5380.
  • [236]
    Völker, U., Maul, B., Hecker, M. (1999) Expression of the σB-dependent general stress response confers multiple stress resistance in Bacillus subtilis. J. Bacteriol. 181, 39423948.
  • [237]
    Kazmierczak, M.J., Mithoe, S.C., Boor, K.J., Wiedmann, M. (2003) Listeria monocytogenesσB regulates stress response and virulence functions. J Bacteriol. 185, 57225734.
  • [238]
    Sue, D., Boor, K.J., Wiedmann, M. (2003) σB-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology 149, 32473256.
  • [239]
    Mekalanos, J.J. (1992) Environmental signals controlling expression of virulence determinants in bacteria. J. Bacteriol. 174, 17.
  • [240]
    Miller, S.I., Kukral, A.M., Mekalanos, J.J. (1989) A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86, 50545058.
  • [241]
    Kreft, J., Vázquez-Boland, J.A. (2001) Regulation of virulence genes in Listeria. Int. J. Med. Microbiol. 291, 145157.
  • [242]
    Prouty, A.M., Gunn, J.S. (2000) Salmonella enterica Serovar Typhimurium invasion is repressed in the presence of bile. Infect. Immun. 68, 67636769.
  • [243]
    Wells, C.L., Jechorek, R.P., Erlandsen, S.L. (1995) Inhibitory effect of bile on bacterial invasion of enterocytes. Crit. Care Med. 23, 301307.
  • [244]
    Pope, L.M., Reed, K.E., Payne, S.M. (1995) Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect. Immun. 63, 36423648.
  • [245]
    Osawa, R., Yamai, S. (1996) Production of thermostable direct hemolysin by Vibrio parahaemolyticus enhanced by conjugated bile acids. Appl. Environ. Microbiol. 62, 30233025.
  • [246]
    Osawa, R., Arakawa, E., Okitsu, T., Yamai, S., Watanabe, H. (2002) Levels of thermostable direct hemolysin produced by Vibrio parahaemolyticus 03:K6 and other serovars grown anaerobically with the presence of a bile acid. Curr. Microbiol. 44, 302305.
  • [247]
    Pace, J.L., Chai, T.J., Rossi, H.A., Jiang, X. (1997) Effect of bile on Vibrio parahaemolyticus. Appl. Environ. Microbiol. 63, 23722377.
  • [248]
    Forsberg, A., Rosqvist, R. (1994) In vivo expression of virulence genes of Y. pseudotuberculosis. Infect. Agents Dis. 2, 275278.
  • [249]
    Straley, S.C., Plano, G.V., Skrzypek, E., Haddix, P.L., Fields, F.A. (1993) Regulation by Ca2+ in the Yersinia low-Ca2+ response. Mol. Microbiol. 8, 10051010.
  • [250]
    Gupta, S., Chowdhury, R. (1997) Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. Immun. 65, 11311134.
  • [251]
    Schuhmacher, D.A., Klose, K.E. (1999) Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. J. Bacteriol. 181, 15081514.
  • [252]
    Krukonis, E.S., DiRita, V.J. (2003) From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol. 6, 186190.
  • [253]
    Rivera-Amill, V., Kim, B.J., Seshu, J., Konkel, M.E. (2001) Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J. Infect. Dis. 183, 16071616.
  • [254]
    Ziprin, R.L., Young, C.R., Byrd, J.A., Stanker, L.H., Hume, M.E., Gray, S.A., Kim, B.J., Konkel, M.E. (2001) Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis. 45, 549557.
  • [255]
    Doig, P., Yao, R., Burr, D.H., Guerry, P., Trust, T.J. (1996) An environmentally regulated pilus-like appendage involved in Campylobacter pathogenesis. Mol. Microbiol. 20, 885894.
  • [256]
    Gaynor, E.C., Ghori, N., Falkow, S. (2001) Bile-induced “pili in Campylobacter jejuni are bacteria-independent artefacts of the culture medium. Mol. Microbiol. 39, 15461549.
  • [257]
    Herold, B.C., Kirkpatrick, R., Marcellino, D., Travelstead, A., Pilipenko, V., Krasa, H., Bremer, J., Dong, L.J., Cooper, M.D. (1999) Bile salts. Natural detergents for the prevention of sexually transmitted diseases. Antimicrob. Agents Chemother. 43, 745751.
  • [258]
    Bouchier, I.A.D. Biliary tract disease. Bouchier, I.A.D., Ed. Gastroenterology. Third ed. 1982. Baillière Tindall, London. 302–327
  • [259]
    Painbeni, E., Caroff, M., Rouviere-Yaniv, J. (1997) Alterations of the outer membrane composition in Escherichia coli lacking the histone-like protein HU. Proc. Natl. Acad. Sci. 94, 67126717.