• [1]
    del Giorgio, P.A., Cole, J.J. (1998) Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 29, 503541.
  • [2]
    Selosse, M.-A., le Tacon, F. (1998) The land flora: a phototroph–fungus partnership. Trends Ecol. Evol. 13, 1520.
  • [3]
    Raven, J.A., Edwards, D. (2001) Roots: evolutionary origin and biochemical significance. J. Exp. Bot. 52, 381401.
  • [4]
    Brundrett, M.C. (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275304.
  • [5]
    Redecker, D., Kodner, R., Graham, L.E. (2000) Glomalean fungi from the Ordovician. Science 289, 19201921.
  • [6]
    Smith, S.E., Read, D.J. (1997) Mycorrhizal Symbiosis. Academic Press, London.
  • [7]
    Griffin, D.M. A comparison of the roles of bacteria and fungi. Leadbetter, E.R., Poindexter, J.S., Eds. Bacteria in Nature. Bacterial Activities in Perspective. vol. 1, 1985. 221–255
  • [8]
    Jennings, D.H. (1987) Translocation of solutes in fungi. Biol. Rev. 62, 215243.
  • [9]
    Hedges, J.I., Oades, J.M. (1997) Comparative organic geochemistries of soils and marine sediments. Org. Geochem. 27, 319361.
  • [10]
    Berbee, M.L., Taylor, J.W. (1993) Dating the evolutionary radiations of the true fungi. Can. J. Bot. 71, 11141127.
  • [11]
    Blair Hedges, S. (2002) The origin and evolution of model organisms. Nat. Rev. 3, 838849.
  • [12]
    Ewbank, G., Edwards, D., Abbott, G.D. (1996) Chemical characterization of Lower Devonian vascular plants. Org. Geochem. 25, 461473.
  • [13]
    Robinson, J.M. (1996) Atmospheric bulk chemistry and evolutionary megasymbiosis. Chemosphere 33, 16411653.
  • [14]
    Taylor, T.N., Osborne, J.M. (1996) The importance of fungi in shaping the paleoecosystem. Rev. Palaeobot. Palynol. 90, 249262.
  • [15]
    Rayner, A.D.M., Boddy, L. (1988) Wood Decomposition: its Biology and Ecology. John Wiley, Chichester, NY.
  • [16]
    Worrall, J.J., Anagnost, S.E., Zabel, R.D. (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89, 199219.
  • [17]
    Bennett, J.W., Feibelman, T. (2001) Fungal bacterial interactions. In: The Mycota IX, Fungal Associations (Esser, K., Ed.), pp.229–242 Springer Verlag, Berlin, Germany.
  • [18]
    Rovira, A.D. (1979) Biology of the soil–root interface. In: The Soil Root Interface (Harley, J.L., Scott-Russell, R., Eds.), pp.145–160 Academic Press, New York.
  • [19]
    Grayston, S.J., Vaughan, D., Jones, D. (1997) Rhizosphere carbon flow in trees in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 2956.
  • [20]
    Jones, D.L. (1998) Organic acids in the rhizosphere: a critical review. Plant Soil 205, 2544.
  • [21]
    Hertenberger, G., Zampach, P., Bachmann, G. (2002) Plant species affect the concentration of free sugars and free amino acids in different types of soil. J. Plant Nutr. Soil Sci. 165, 557565.
  • [22]
    De Rooij-van der Goes, P.C.E.M., van der Putten, W.H., Van Dijk, C. (1995) Analysis of nematodes and soil-borne fungi from Ammophila arenaria (Marram Grass) in Dutch coastal foredunes by multivariate techniques. Eur. J. Plant Pathol. 101, 149162.
  • [23]
    Newsham, K.K., Watkinson, A.R., Fitter, A.H. (1995) Rhizosphere and root-infecting fungi and the design of ecological field experiments. Oecologia 102, 230237.
  • [24]
    Buyer, J.S., Roberts, D.P., Russek-Cohen, E. (2002) Soil and plant effects on microbial community structure. Can. J. Microbiol. 48, 955964.
  • [25]
    Orazova, M.K., Polyanskaya, L.M., Zvyagintsev, D.G. (1999) The structure of the microbial community in the barley root zone. Microbiology 68, 109115.
  • [26]
    Anderson, J.P.E., Domsch, K.H. (1973) Quantification of bacterial and fungal contributions to soil respiration. Arch. Mikrobiol. 93, 113127.
  • [27]
    Boschker, H.T.S., Middelburg, J.J. (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol. Ecol. 40, 8595.
  • [28]
    Butler, J.L., Williams, M.A., Bottomley, P.J., Myrold, D.D. (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl. Environ. Microbiol. 69, 67936800.
  • [29]
    Treonis, A.M., Ostle, N.J., Stott, A.W., Primrose, R., Grayston, S.J., Ineson, P. (2004) Identification of groups of metabolically active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol. Biochem. 36, 533537.
  • [30]
    Arao, T. (1999) In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into phospholipid fatty acids from 13C acetate. Soil Biol. Biochem. 31, 10151020.
  • [31]
    Griffiths, B.S., Ritz, K., Ebblewhite, N., Dobson, G. (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biol. Biochem. 31, 145153.
  • [32]
    Lundberg, P., Ekblad, A., Nilsson, M. 13C NMR spectroscopy studies of forest soil microbial activity: glucose uptake and fatty acid biosynthesis. Soil Biol. Biochem. 33, 2001. 621–632
  • [33]
    Waldrop, M.P., Firestone, M.K. (2004) Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia 138, 275284.
  • [34]
    Radajewski, S., Ineson, P., Parekh, N.R., Murrell, J.C. (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403, 646649.
  • [35]
    Handelsman, J., Stabb, E.V. (1996) Biocontrol of soil-borne pathogens. Plant Cell 8, 18551869.
  • [36]
    Whipps, J.M. (2001) Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487511.
  • [37]
    Weller, D.M., Raaijmakers, J.M., McSpadden Gardener, B.B., Thomashow, L.S. (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40, 309348.
  • [38]
    Wheatley, R.E. (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek 81, 357364.
  • [39]
    Heeb, S., Haas, D. (2001) Regulatory roles of the GacS/GacA two-component systems in plant-associated and other Gram-negative bacteria. Mol. Plant–Microbe Interact. 14, 13511363.
  • [40]
    Raaijmakers, J.M., Vlami, M., De Souza, J.T. (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81, 537547.
  • [41]
    Duffy, B., Schouten, A., Raaijmakers, J.M. (2003) Pathogen self-defence: mechanisms to counteract microbial antagonism. Annu. Rev. Phytopathol. 41, 501538.
  • [42]
    Cooke, R.C., Rayner, A.D.M. (1984) Ecology of Saprotrophic Fungi. Longman, London, New York.
  • [43]
    Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S. (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506577.
  • [44]
    Leschine, S.B. (1995) Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 49, 399426.
  • [45]
    Doi, R.H., Kosugi, A. (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2, 541551.
  • [46]
    Mansfield, S.D., Meder, R. (2003) Cellulose hydrolysis – the role of the monocomponent cellulases in crystalline cellulose degradation. Cellulose 10, 159169.
  • [47]
    Tuor, U., Winterhalter, K., Fiechter, A. (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants of wood decay. J. Biotechnol. 41, 117.
  • [48]
    Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M., Cho, N.-S., Hofrichter, M., Rogalski, J. (1999) Biodegradation of lignin by white rot fungi. Fung. Genet. Biol. 27, 175185.
  • [49]
    Daniel, G., Nilsson, T. (1998) Developments in the study of soft rot and bacterial decay. In: Forest Products Biotechnology (Bruce, A., Palfreyman, J.W., Eds.), pp.37–62 Taylor & Francis, London.
  • [50]
    F. Green III Highley, T.L. (1997) Mechanism of brown-rot decay: paradigm or paradox. Int. Biodet. Biodegrad. 39, 113124.
  • [51]
    Goodell, B. Brown-rot fungal degradation of wood: our evolving view. Goodell, B., Nicolas, D.D., Schultz, T.P., Eds. Wood Deterioration and Preservation. ACS Symposium Series. vol. 845, 2003. American Chemical Society, Washington, DC. 97–118
  • [52]
    McCarthy, A.J., Williams, S.T. (1992) Actinomycetes as agents of biodegradation in the environment – a review. Gene 115, 189192.
  • [53]
    Wirth, S., Ulrich, A. (2002) Cellulose-degrading potentials and phylogenetic classification of carboxymethyl-cellulose decomposing bacteria isolated from soil. System. Appl. Microbiol. 25, 584591.
  • [54]
    McCarthy, A.J. (1987) Lignocellulose-degrading actinomycetes. FEMS Microbiol. Rev. 46, 145163.
  • [55]
    Dombou, C.L., Salove, M.K.H., Crawford, D.L., Beaulieu, C. (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82, 85101.
  • [56]
    Challis, G.L., Hopwood, D.A. (2004) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. USA 100 (Suppl. 2), 1455514561.
  • [57]
    Hu, S., Van Bruggen, A.H.C. (1997) Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil. Microbial Ecol. 33, 134143.
  • [58]
    Munimbazi, C., Bullerman, L.B. (1998) Isolation and partial characterization of antifungal metabolites of Bacillus pumilis. J. Appl. Microbiol. 84, 959968.
  • [59]
    Clausen, C.A. (1996) Bacterial associations with decaying wood: a review. Int. Biodet. Biodegrad. 37, 101107.
  • [60]
    Daniel, G. Microview of wood under degradation by bacteria and fungi. Goodell, B., Nicolas, D.D., Schultz, T.P., Eds. Wood Deterioration and Preservation. ACS Symposium Series. vol. 845, 2003. American Chemical Society, Washington, DC. 34–72
  • [61]
    Rabinovich, M.L., Melnik, M.S., Bolobova, A.V. Microbial cellulases. Appl. Biochem. Microbiol. 38, 2002. 305–321 . (Review)
  • [62]
    Fengel, D. (1971) Ultrastructural organization of the cell wall components. J. Polym. Sci. 36, 383392.
  • [63]
    Tuomela, M., Vikman, M., Hatakka, A., Itävaara, M. (2000) Biodegradation of lignin in a compost environment: a review. Biores. Technol. 72, 169183.
  • [64]
    Kirk, T.K., Farrell, R.L. (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465505.
  • [65]
    Céspedes, R., González, B., Vicuña, R. (1997) Characterization of a bacterial consortium degrading the lignin model compound vanillyl-β-d-glucopyranoside. J. Basic Microbiol. 3, 175180.
  • [66]
    Falcón, M.A., Rodrııguez, A., Carnicero, A., Regalado, V., Perestelo, F., Milstein, O., de la Fuente, G. (1995) Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol. Biochem. 27, 121126.
  • [67]
    Vicuña, R., González, B., Seelenfreund, D., Ruttimann, C., Salas, L. (1993) Ability of natural bacterial isolates to metabolize high and low-molecular-weight lignin-derived molecules. J. Biotechnol. 30, 913.
  • [68]
    Peng, X., Masai, E., Kitayama, H., Harada, K., Katayama, Y., Fukuda, M. (2002) Characterization of the 5-carboxyvanillate decarboxylase gene and its role in lignin-related biphenyl catabolism in Sphingomonas paucimobilis SYK-6. Appl. Environ. Microbiol. 68, 44074415.
  • [69]
    Trigo, C., Ball, A.S. (1994) Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances. Microbiology – UK 140, 31453152.
  • [70]
    Lang, E., Kleeberg, I., Zadrazil, F. (2000) Extractable organic carbon and counts of bacteria near the lignocellulose-soil interface during the interaction of soil microbiota and white rot fungi. Biores. Technol. 75, 5765.
  • [71]
    Tornberg, K., Bååth, E., Olsson, S. (2003) Fungal growth and effects of different wood decomposing fungi on the indigenous bacteria community of polluted and unpolluted soils. Biol. Fertil. Soils 37, 190197.
  • [72]
    Lang, E., Kleeberg, I., Zadrazil, F. (1997) Competition of Pleurotus sp. and Dichomitus squalens with soil microorganisms during lignocellulose decomposition. Biores. Technol. 60, 9599.
  • [73]
    Gramss, G., Voigt, K.-D., Kirsche, B. (1999) Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soil. Biodegradation 10, 5162.
  • [74]
    Andersson, B.E., Lunderstedt, S., Tornberg, K., Schnurer, Y., Oberg, L.G., Mattiasson, B. (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on indigenous soil bacteria. Environ. Toxicol. Chem. 22, 12381243.
  • [75]
    Tornberg, K., Olsson, S. (2002) Detection of hydroxyl radicals produced by wood-decomposing fungi. FEMS Microbiol. Ecol. 40, 1320.
  • [76]
    Murray, A.C., Woodward, S. (2003) In vitro interactions between bacteria isolated from Sitka spruce stumps and Heterobasidion annosum. Forest Pathol. 33, 5367.
  • [77]
    Greaves, H. (1971) The bacterial factor in wood decay. Wood Sci. Technol. 5, 616.
  • [78]
    Jurgensen, M.F., Larsen, M.J., Wolosiewicz, M., Harvey, A.E. (1989) A comparison of dinitrogen fixation rates in wood litter decayed by white-rot fungi and brown-rot fungi. Plant and Soil 115, 117122.
  • [79]
    Hendrickson, O.Q. (1991) Abundance and activity of N2-fixing bacteria in decaying wood. Can. J. For. Res. 21, 12991304.
  • [80]
    Katznelson, H., Rouatt, J.W., Peterson, E.A. (1962) The rhizosphere effect of mycorrhizal and nonmycorrhizal roots of yellow birch seedlings. Can. J. Bot. 40, 377382.
  • [81]
    Oswald, E.T., Ferchau, H.A. Bacterial associations of coniferous mycorrhizae. Plant and Soil. 28, 1968. 187192
  • [82]
    J.L. Neal Jr. Bollen, W.B., Zak, B. (1964) Rhizosphere microflora associated with mycorrhizae of Douglas fir. Can. J. Microbiol. 10, 259265.
  • [83]
    Schelkle, M., Ursic, M., Farquhar, M., Peterson, R.L. (1996) The use of laser scanning confocal microscopy to characterize mycorrhizas of Pinus strobus L. and localize associated bacteria. Mycorrhiza 6, 431440.
  • [84]
    Nurmiaho-Lassila, E.-L., Timonen, S., Haahtela, K., Sen, R. (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can. J. Microbiol. 43, 10171035.
  • [85]
    Andrade, G., Linderman, R.G., Bethlenfalvay, G.J. (1998) Bacterial associations with the mycorrhizosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202, 7987.
  • [86]
    Timonen, S., Jørgensen, K.S., Haahtela, K., Sen, R. (1998) Bacterial community structure at defined locations of Pinus sylvestrisSuillus bovinus and Pinus sylvestrisPaxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can. J. Microbiol. 44, 499513.
  • [87]
    Mogge, B., Loferer, C., Agerer, R., Hutzler, P., Hartmann, A. (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9, 271278.
  • [88]
    Mansfeld-Giese, K., Larsen, J., Bødker, L. (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol. Ecol. 41, 133140.
  • [89]
    Linderman, R.G., Paulitz, T.C. (1990) Mycorrhizal–rhizobacterial interactions. In: Biological Control of Soil-borne Plant Pathogens (Hornby, D., Ed.), pp.261–283 CAB International, Wallingford, UK.
  • [90]
    Danell, E., Alström, S., Ternström, A. (1993) Pseudomonas fluorescens in association with fruit bodies of the ectomycorrhizal mushroom Cantharellus cibarius. Mycol. Res. 97, 11481152.
  • [91]
    Barea, J.-M., Azcón, R., Azcón-Aguilar, C. (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81, 343351.
  • [92]
    Rangel-Castro, J.I., Danell, E., Pfeffer, P.E. (2002) A 13C NMR study of exudation and storage of carbohydrates and amino acids in the ectomycorrhizal edible mushroom Cantharellus cibarius. Mycologia 94, 190199.
  • [93]
    Rillig, M.C. (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 7, 740754.
  • [94]
    Andrade, G., Mihara, K.L., Linderman, R.G., Bethlenfalvay, G.J. (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192, 7179.
  • [95]
    Linderman, R.G. (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78, 366371.
  • [96]
    Johansson, J.F., Paul, L.R., Finlay, R.D. (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48, 113.
  • [97]
    Tsukamoto, T., Murata, H., Shirata, A. (2002) Identification of non-pseudomonad bacteria from fruit bodies of wild Agaricales fungi that detoxify tolaasin produced by Pseudomonas tolaasii. Biosci. Biotechnol. Biochem. 66, 22012208.
  • [98]
    Lim, Y.W., Baik, K.S., Han, S.K., Kim, S.B., Bae, K.S. (2003) Burkholderia sordicola sp. nov., isolated from the white rot fungus Phanerochaete sordida. Int. J. Syst. Evol. Microbiol. 53, 16311636.
  • [99]
    Artursson, V., Jansson, J.K. (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl. Environ. Microbiol. 69, 62086215.
  • [100]
    Bomberg, M., Jurgens, G., Saano, A., Sen, R., Timonen, S. (2003) Nested PCR identification of archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMS Microbiol. Ecol. 43, 163177.
  • [101]
    Frey, P., Frey-Klett, P., Garbaye, J., Berge, O., Heulin, T. (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir –Laccaria bicolor mycorrhizosphere. Appl. Environ. Microbiol. 63, 18521860.
  • [102]
    Rangel-Castro, J.I., Levenfors, J.J., Danell, E. (2002) Physiological and genetic characterization of fluorescent Pseudomonas associated with Cantharellus cibarius. Can. J. Microbiol. 48, 739748.
  • [103]
    Dutton, M.V., Evans, C.S. (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42, 881895.
  • [104]
    Landeweert, R., Hoffland, E., Finlay, R.D., Kuyper, T.W., Van Breemen, N. (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16, 248254.
  • [105]
    Sahin, N. (2003) Oxalotrophic bacteria. Res. Microbiol. 154, 399407.
  • [106]
    Knutson, D.M., Hutchins, A.S. K. Cromack Jr. (1980) The association of calcium-oxalate-utilizing Streptomyces with conifer ectomycorrhizae. Antonie van Leeuwenhoek 46, 611619.
  • [107]
    Finlay, R., Söderström, B. (1992) Mycorrhiza and carbon flow to the soil. In: Mycorrhizal Functioning (Allen, M.J., Ed.), pp.134–160 Chapman & Hall, New York.
  • [108]
    Olsson, P.A., Chalot, M., Bååth, E., Finlay, R.D., Söderström, B. (1996) Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiol. Ecol. 21, 7786.
  • [109]
    Sidorova, I.I., Velikanov, L.L. (2000) Bioactive substances of agaricoid basidiomycetes and their possible role in soils of forest ecosystems. I. Antibiotic activity of water extracts from basidiomes of several dominant agaricoid Basidiomycetes. Mikol. Fitopatol. 34, 1117.
  • [110]
    Seigle-Murandi, F., Guiraud, P., Croizé, J., Falsen, E., Eriksson, K.-E.L. (1996) Bacteria are omnipresent on Phanerochaete chrysosporium Burdsall. Appl. Environ. Microbiol. 62, 2812477.
  • [111]
    Jones, D.L., Hodge, A., Kuzyakov, Y. (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163, 459480.
  • [112]
    Amora-Lazcano, E., Vazquez, M.M., Azcon, R. (1998) Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol. Fert. Soils 27, 6570.
  • [113]
    Bianciotto, V., Minerdi, D., Perotto, S., Bonfante, P. (1996) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193, 123137.
  • [114]
    Jana, T.K., Srivastava, A.K., Csery, K., Aroran, D.K. (2000) Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Can. J. Microbiol. 46, 2837.
  • [115]
    Xavier, L.J.C., Germida, J.J. (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol. Biochem. 35, 471478.
  • [116]
    Bending, G.D., Poole, E.J., Whipps, J.M., Read, D.J. (2002) Characterisation of bacteria from Pinus sylvestrisSuillus luteus mycorrhizas and their effects on root–fungus interactions and plant growth. FEMS Microbiol. Ecol. 39, 219227.
  • [117]
    Duine, A.S., De Boer, W., Kowalchuk, G.A., Klein Gunnewiek, P.J.A., Smant, W., Van Veen, J.A. (2004) Influences of environmental conditions on rhizosphere bacterial community composition in natural stands of Carex arenaria (Sand sedge). Soil Biol Biochem. 37, 349357.
  • [118]
    Hurek, T., Wagner, B., Reinhold-Hurek, B. (1997) Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR based genomic fingerprints. Appl. Environ. Microbiol. 63, 43314339.
  • [119]
    Dörr, J., Hurek, T., Reinhold-Hurek, B. (1998) Type IV pili are involved in plant–microbe and fungus–microbe interactions. Molec. Microbiol. 30, 717.
  • [120]
    Honegger, R. (1998) The lichen symbiosis – what is so spectacular about it. Lichenologist 30, 193212.
  • [121]
    Honegger, R. (2001) The symbiotic phenotype of lichen-forming ascomycetes. In: The Mycota IX, Fungal Associations (Esser, K., Ed.), pp.165–188 Springer Verlag, Berlin, Germany.
  • [122]
    Richardson, D.H.S. (1999) War in the world of lichens: parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol. Res. 103, 641650.
  • [123]
    Rai, A.N., Söderbäck, E., Bergman, B. (2000) Cyanobacterium–plant symbioses. New Phytol. 147, 449481.
  • [124]
    Li, C.Y., Massicote, H.B., More, L.V.H. (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant and Soil 140, 3540.
  • [125]
    Filipi, C., Bagnoli, G., Giovanetti, M. (1995) Bacteria associated to arbuscoid mycorrhizae in Arbutus unedo L. Symbiosis 18, 5768.
  • [126]
    Garbaye, J. (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol. 128, 197210.
  • [127]
    Frey-Klett, P., Pierrat, J.C., Garbaye, J. (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl. Environ. Microbiol. 63, 139144.
  • [128]
    Brulé, C., Frey-Klett, P., Pierrat, J.C., Courier, S., Gérard, F., Lemoine, M.C., Rousselet, J.L., Sommer, G., Garbaye, J. (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effect of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol. Biochem. 33, 16831694.
  • [129]
    Poole, E.J., Bending, G.D., Whipps, J.M., Read, D.J. (2001) Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol. 151, 741753.
  • [130]
    Becker, D.M., Bagley, S.T., Podila, G.K. (1999) Effects of mycorrhizal-associated streptomycetes on growth of Laccaria bicolor, Cenococcum geophilum, and Armillaria species and on gene expression in Laccaria bicolor. Mycologia 91, 3340.
  • [131]
    Budi, S.W., Van Tuinen, D., Marttinotti, G., Gianinazzi, S. (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne pathogens. Appl. Environ. Microbiol. 65, 51485150.
  • [132]
    Medina, A., Probanza, A., Gutierrez Mañero, F.J., Azcón, R. (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl. Soil Ecol. 22, 1528.
  • [133]
    Fester, T., Maier, W., Strack, D. (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8, 241246.
  • [134]
    Rainey, P.B., Cole, A.L.J., Fermor, T.R., Wood, D.A. (1990) A model system for examining involvement of bacteria in basidiome initiation of Agaricus bisporus. Mycol. Res. 94, 191195.
  • [135]
    Cho, Y.S, Kim, J.S., Crowley, D.E., Cho, B.G. (2003) Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiol. Lett. 218, 271276.
  • [136]
    Mayo, K., Davis, R.E., Motta, J. (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78, 426431.
  • [137]
    Ali, N.A., Jackson, R.M. (1989) Stimulation of germination of spores of some ectomycorrhizal fungi by other micro-organisms. Mycol. Res. 93, 182186.
  • [138]
    Carpenter-Boggs, L., Loynachan, T.E., Stahl, P.D. (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol. Biochem. 27, 14451451.
  • [139]
    Filipi, C., Bagnoli, G., Citernesi, A.S., Giovanetti, M. (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mossae. Symbiosis 24, 112.
  • [140]
    Citterio, B., Malatesta, M., Battistelli, S., Marcheggiani, F., Baffone, W., Saltarelli, R., Stocchi, V., Gazzanelli, G. (2001) Possible involvement of Pseudomonas fluorescens and Bacillaceae in structural modifications of Tuber borchii fruit bodies. Can. J. Microbiol. 47, 264268.
  • [141]
    Lockwood, J.L. (1977) Fungistasis in soils. Biol. Rev. 52, 143.
  • [142]
    Toyota, K., Kimura, M. (1993) Colonization of chlamydospores of Fusarium oxysporum f. sp. raphani by soil bacteria and their effects on germination. Soil Biol. Biochem. 25, 193197.
  • [143]
    Lockwood, J.L. (1986) Soiborne plant pathogens: concepts and connections. Phytopathology 76, 2027.
  • [144]
    Liebman, J.A., Epstein, L. (1992) Activity of fungistatic compounds from soil. Phytopathology 82, 147153.
  • [145]
    De Boer, W., Verheggen, P., Klein Gunnewiek, P.J.A., Kowalchuk, G.A., Van Veen, J.A. (2003) Microbial community composition affects soil fungistasis. Appl. Environ. Microbiol. 69, 835844.
  • [146]
    Moran, N.A., Baumann, P. (2000) Bacterial endosymbionts in animals. Curr. Opin. Microbiol. 3, 270275.
  • [147]
    Sturz, A.V., Christie, B.R., Nowak, J. (2000) Bacterial endophytes: potential role in developing sustainable crop production. Crit. Rev. Plant Sci. 19, 130.
  • [148]
    Winiecka-Krusnell, J., Linder, E. (2001) Bacterial infections of free-living amoebae. Res. Microbiol. 152, 613619.
  • [149]
    Sagan, L. (1967) On the origin of mitosing cells. J. Theor. Biol. 14, 225274.
  • [150]
    Hoffmeister, M., Martin, W. (2003) Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. Environ. Microbiol. 5, 641649.
  • [151]
    Bianciotto, V., Bonfante, P. (2002) Arbuscular mycorrhizal fungi: a specialized niche for rhizospheric and endocellular bacteria. Antonie van Leeuwenhoek 81, 365371.
  • [152]
    Scannerini, S., Bonfante-Fasolo, P. (1991) Bacteria and bacteria like objects in endomycorrhizal fungi (Glomaceae). In: Symbiosis as Source of Evolutionary Innovation: Speciation and Morphogenesis (Margulis, L., Fester, R., Eds.), pp.273–287 The MIT Press, Cambridge, MA.
  • [153]
    Bianciotto, V., Bandi, C., Minerdi, D., Sironi, M., Tichy, H.V., Bonfante, P. (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl. Environ. Microbiol. 62, 30053010.
  • [154]
    Bianciotto, V., Lumni, E., Bonfante, P., Vandamme, P. (2003) Candidatus Glomeribacter gigasporum gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int. J. Syst. Evol. Microbiol. 53, 121124.
  • [155]
    Bianciotto, V., Lumini, E., Lanfranco, L., Minerdi, D., Bonfante, P., Perotto, S. (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belong to the family Gigasporaceae. Appl. Environ. Microbiol. 66, 45034509.
  • [156]
    Ruiz-Lozano, J.M., Bonfante, P. (2001) Intracellular Burkholderia strain has no negative effect on the symbiotic efficiency of the arbuscular mycorrhizal fungus Gigaspora margarita. Plant Growth Regul. 34, 347352.
  • [157]
    Minerdi, D., Fani, R., Gallo, R., Boariono, A., Bonfante, P. (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl. Environ. Microbiol. 67, 725732.
  • [158]
    Bianciotto, V., Genre, A., Jargeat, P., Lumini, E., Bécard, G., Bonfante, P. (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl. Environ. Microbiol. 70, 36003608.
  • [159]
    Wessels, J.G.H. (1994) Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 32, 413437.
  • [160]
    Redecker, D., Morton, J.B., Bruns, T.D. (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol. Phylogenet. Evol. 14, 276284.
  • [161]
    Schlüsser, A., Kluge, M. (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: The Mycota IX, Fungal Associations (Esser, K., Ed.), pp.151–161 Springer Verlag, Berlin, Germany.
  • [162]
    Levy, A., Chang, B.J., Abbott, L.K., Kuo, J., Harnett, G., Inglis, T.J. (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl. Environ. Microbiol. 69, 62506256.
  • [163]
    Logi, C., Sbrana, C., Giovanetti, M. (1998) Cellular events in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl. Environ. Microbiol. 64, 34733479.
  • [164]
    Bertaux, J., Schmid, M., Chemidlin Prevost-Boure, N., Churin, J.L., Hartmann, A., Garbaye, J., Frey-Klett, P. (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl. Environ. Microbiol. 69, 42434248.
  • [165]
    Buscot, F. (1994) Ectomycorrhizal types and endobacteria associated with ectomycorrhizas of Morchella elata (Fr.) Boudier with Picea abies (L.) Karst. Mycorrhiza 4, 223232.
  • [166]
    Barbieri, E., Potenza, L., Rossi, I., Sisti, D., Giomaro, G., Rossetti, S., Beimfohr, C., Stocchi, V. (2000) Phylogenetic characterization and in situ detection of a CytophagaFlexibacterBacteroides phylogroup bacterium in Tuber borchii Vittad. ectomycorrhizal mycelium. Appl. Environ. Microbiol. 66, 50355042.
  • [167]
    Barbieri, E., Riccioni, G., Pisano, A., Sisti, D., Zeppa, S., Agostini, D., Stocchi, V. (2002) Competitive PCR for quantitation of a CytophagaFlexibacterBacteroides phylum bacterium associated with the Tuber borchii Vittad. mycelium. Appl. Environ. Microbiol. 68, 64216424.
  • [168]
    Chet, I., Inbar, J., Hadar, Y. (1997) Fungal antagonists and mycoparasites. In: The Mycota IV, Environmental and Microbial Relationships (Esser, K., Lemke, P.A., Eds.), pp.165–184 Springer Verlag, Berlin, Germany.
  • [169]
    Jeffries, P. (1997) Mycoparasitism. In: The Mycota IV, Environmental and Microbial Relationships (Esser, K., Lemke, P.A., Eds.), pp.149–1164 Springer Verlag, Berlin, Germany.
  • [170]
    Zeilinger, S., Galhaup, C., Payer, K., Woo, S.L, Mach, R.L., Fekete, C., Lorito, M., Kubicek, C.P. (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet. Biol. 26, 131140.
  • [171]
    Rehm, H.-J. (1959) Untersuchungen über des verhalten von Aspergillus niger und einem Streptomyces albus stamm in misch cultur. II. Die wechselbeziehungen im erdboden. Zentralbl. Bakteriol. Parasitenk., Abt. II 112, 235263.
  • [172]
    Lee, P.-J., Koske, R.E. (1994) Gigaspora gigantea: parasitism of spores by fungi and actinomycetes. Mycol. Res. 98, 458466.
  • [173]
    Mitchell, R., Alexander, M. (1963) Lysis of soil fungi by bacteria. Can. J. Microbiol. 9, 169177.
  • [174]
    Inbar, J., Chet, I. (1991) Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne pathogens by this bacterium. Soil Biol. Biochem. 23, 973978.
  • [175]
    Lim, H.-S., Kim, Y.-S., Kim, S.-D. (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microbiol. 57, 510516.
  • [176]
    Chernin, L., Ismailov, Z., Haran, S., Chet, I. (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal pathogens. Appl. Environ. Microbiol. 61, 17201726.
  • [177]
    Dijksterhuis, J., Sanders, M., Gorris, L.G.M., Smid, E.J. (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol. 86, 1321.
  • [178]
    Hogan, D.A., Kolter, R. (2002) PseudomonasCandida interactions: an ecological role for virulence factors. Science 291, 22292232.
  • [179]
    De Boer, W., Klein Gunnewiek, P.J.A., Kowalchuk, G.A., Van Veen, J.A. (2001) Growth of chitinolytic dune soil β-subclass Proteobacteria in response to invading fungal hyphae. Appl. Environ. Microbiol. 67, 33583362.
  • [180]
    De Boer, W., Leveau, J.H.L., Kowalchuk, G.A., Klein Gunnewiek, P.J.A., Abeln, E.C.A., Figge, M.J., Sjollema, K., Janse, J.D., Van Veen, J.A. (2004) Collimonas fungivorans gen. nov., sp. nov. a chitinolytic soil bacterium with the ability to grown on living fungal hyphae. Int. J. Syst. Evol. Microbiol. 54, 857864.
  • [181]
    Dawid, W. (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24, 403427.
  • [182]
    Reichenbach, H. (1999) The ecology of the myxobacteria. Environ. Microbiol. 1, 1521.
  • [183]
    Bull, C.T. (2002) Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis. 86, 889896.
  • [184]
    Homma, Y. (1984) Perforation and lysis of hyphae of Rhizoctonia solani and conidia of Cochliobolus miyabeanus by soil myxobacteria. Phytopathology 74, 12341239.
  • [185]
    Budi, S.W., Van Tuinen, D., Arnould, C., Dumas-Gaudot, E., Gianinazzi-Pearson, V., Gianinazzi, S. (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15, 191199.
  • [186]
    Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J.M., Wichers, H.J. (1999) Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol. Rev. 23, 591614.
  • [187]
    Barron, G.L. (1988) Microcolonies of bacteria as nutrient source for lignicolous and other fungi. Can. J. Bot. 66, 25052510.
  • [188]
    Tsuneda, A., Thorn, R.G. (1994) Interactions of wood decay fungi with other microorganisms with emphasis on the degradation of cell walls. Can. J. Bot. 73 (Suppl. 1), 13251333.
  • [189]
    De Boer, W., Klein Gunnewiek, P.J.A., Lafeber, P., Janse, J.D., Spit, B.E., Woldendorp, J.W. (1998) Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol. Biochem. 30, 193203.
  • [190]
    Lockwood, J.L. The fungal environment of soil bacteria. Gray, T.R.G., Parkinson, D., Eds. The Ecology of Soil Bacteria. 1967. Liverpool University Press. 44–65
  • [191]
    De Boer, W., Gerards, S., Klein Gunnewiek, P.J.A., Modderman, R. (1999) Response of the chitinolytic microbial community to chitin amendments of dune soils. Biol. Fertil. Soils 29, 170177.
  • [192]
    Krišt?fek, V., Fischer, S., Bührmann, J., Zeltins, A., Schrempf, H. (1999) In situ monitoring of chitin degradation by Streptomyces lividans pCHIO12 within Enchytraeus crypticus (Oligochaeta) feeding on Aspergillus proliferans. FEMS Microbiol. Ecol. 28, 4148.
  • [193]
    Baldy, V., Chauvet, E., Charcosset, J.-Y., Gessner, M.O. (2002) Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat. Microb. Ecol. 28, 2536.
  • [194]
    Gulis, V., Suberkropp, K. (2003) Interactions between stream fungi and bacteria associated with decomposing litter at different levels of nutrient availability. Aquat. Microb. Ecol. 30, 149157.
  • [195]
    Varese, G.C., Portinaro, S., Trotta, A., Scannerini, S., Luppi-Mosca, A.M., Martinotti, M.G. (1996) Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on in vitro growth of the mycobiont. Symbiosis 21, 129147.
  • [196]
    Barbieri, E., Potenza, L., Stocchi, V. (2001) Molecular characterization of cellulosolytic-chitinolytic bacteria associated with fruitbodies of the ectomycorrhizal fungus Tuber borchii Vittad. Symbiosis 30, 123139.
  • [197]
    Gazzanelli, G., Malatesta, M., Pianetti, A., Baffone, W., Stocchi, V., Citterio, B. (1999) Bacteria associated to fruit bodies of the ectomycorrhizal fungus Tuber borchii Vittad. Symbiosis 26, 211222.