• [1]
    Dobzhansky, T. (1973) Nothing in biology makes sense except in the light of evolution. Am. Biol. Teacher 35, 125129.
  • [2]
    Hueck, C.J. (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379433.
  • [3]
    Salmond, G.P., Reeves, P.J. (1993) Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem. Sci. 18, 712.
  • [4]
    Preston, G., Studholme, D., Caldelari, I. Profiling the secretomes of plant pathogenic Proteobacteria. FMR Microbiol. Rev. >20 2005
  • [5]
    Konkel, M.E., Klena, J.D., Rivera-Amill, V., Monteville, M.R., Biswas, D., Raphael, B., Mickelson, J. (2004) Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186, 32963303.
  • [6]
    Francis, M.S., Wolf-Watz, H., Forsberg, A. (2002) Regulation of type III secretion systems. Curr. Opin. Microbiol. 5, 166172.
  • [7]
    Pallen, M.J., Chaudhuri, R.R., Henderson, I.R. (2003) Genomic analysis of secretion systems. Curr. Opin. Microbiol. 6, 519527.
  • [8]
    He, S.Y., Nomura, K., Whittam, T.S. (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694, 181206.
  • [9]
    Gauthier, A., Thomas, N.A., Finlay, B.B. (2003) Bacterial injection machines. J. Biol. Chem. 278, 2527325276.
  • [10]
    Muller, S., Feldman, M.F., Cornelis, G.R. (2001) The Type III secretion system of Gram-negative bacteria: a potential therapeutic target. Expert Opin. Ther. Targets 5, 327339.
  • [11]
    Russmann, H. (2003) Bacterial type III translocation: a unique mechanism for cytosolic display of heterologous antigens by attenuated Salmonella. Int. J. Med. Microbiol. 293, 107112.
  • [12]
    Russmann, H. (2003) Yersinia outer protein E, YopE. A versatile type III effector molecule for cytosolic targeting of heterologous antigens by attenuated Salmonella. Adv. Exp. Med. Biol. 529, 407413.
  • [13]
    Ramamurthi, K.S., Schneewind, O. (2002) Type III protein secretion in yersinia species. Annu. Rev. Cell Dev. Biol. 18, 107133.
  • [14]
    Cornelis, G.R. (2002) The Yersinia Ysc-Yop virulence apparatus. Int. J. Med. Microbiol. 291, 455462.
  • [15]
    Cornelis, G.R. (2002) The Yersinia Ysc-Yop ‘type III’ weaponry. Nat. Rev. Mol. Cell Biol. 3, 742752.
  • [16]
    Zaharik, M.L., Gruenheid, S., Perrin, A.J., Finlay, B.B. (2002) Delivery of dangerous goods: type III secretion in enteric pathogens. Int. J. Med. Microbiol. 291, 593603.
  • [17]
    Phalipon, A., Sansonetti, P.J. (2003) Shigellosis: innate mechanisms of inflammatory destruction of the intestinal epithelium, adaptive immune response, and vaccine development. Crit. Rev. Immunol. 23, 371401.
  • [18]
    Tran Van Nhieu, G., Bourdet-Sicard, R., Dumenil, G., Blocker, A., Sansonetti, P.J. (2000) Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell Microbiol. 2, 187193.
  • [19]
    Nhieu, G.T., Sansonetti, P.J. (1999) Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2, 5155.
  • [20]
    Roe, A.J., Hoey, D.E., Gally, D.L. (2003) Regulation, secretion and activity of type III-secreted proteins of enterohaemorrhagic Escherichia coli O157. Biochem. Soc. Trans. 31, 98103.
  • [21]
    Delahay, R.M., Frankel, G., Knutton, S. (2001) Intimate interactions of enteropathogenic Escherichia coli at the host cell surface. Curr. Opin. Infect. Dis. 14, 559565.
  • [22]
    Kenny, B. (2002) Mechanism of action of EPEC type III effector molecules. Int. J. Med. Microbiol. 291, 469477.
  • [23]
    Clarke, S.C., Haigh, R.D., Freestone, P.P., Williams, P.H. (2003) Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin. Microbiol. Rev. 16, 365378.
  • [24]
    Hansen-Wester, I., Hensel, M. (2001) Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect. 3, 549559.
  • [25]
    Lostroh, C.P., Lee, C.A. (2001) The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect. 3, 12811291.
  • [26]
    Hensel, M. (2000) Salmonella pathogenicity island 2. Mol. Microbiol. 36, 10151023.
  • [27]
    Deng, W., Puente, J.L., Gruenheid, S., Li, Y., Vallance, B.A., Vazquez, A., Barba, J., Ibarra, J.A., O'Donnell, P., Metalnikov, P., Ashman, K., Lee, S., Goode, D., Pawson, T., Finlay, B.B. (2004) Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc. Natl. Acad. Sci. USA 101, 35973602.
  • [28]
    Darwin, C. (1859) Origin of species. John Murray, London.
  • [29]
    Aizawa, S.I. (2001) Bacterial flagella and type III secretion systems. FMR Microbiol. Lett. 202, 157164.
  • [30]
    Blocker, A., Komoriya, K., Aizawa, S. (2003) Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl. Acad. Sci. USA 100, 30273030.
  • [31]
    Fields, K.A., Mead, D.J., Dooley, C.A., Hackstadt, T. (2003) Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol. Microbiol. 48, 671683.
  • [32]
    Slepenkin, A., Motin, V., de la Maza, L.M., Peterson, E.M. (2003) Temporal expression of type III secretion genes of Chlamydia pneumoniae. Infect. Immun. 71, 25552562.
  • [33]
    Lugert, R., Kuhns, M., Polch, T., Gross, U. Expression and localization of type III secretion-related proteins of Chlamydia pneumoniae. Med. Microbiol. Immunol. (Berl). 2003
  • [34]
    Allmond, L.R., Karaca, T.J., Nguyen, V.N., Nguyen, T., Wiener-Kronish, J.P., Sawa, T. (2003) Protein binding between PcrG-PcrV and PcrH-PopB/PopD encoded by the pcrGVH-popBD operon of the Pseudomonas aeruginosa type III secretion system. Infect. Immun. 71, 22302233.
  • [35]
    Saliba, A.M., Filloux, A., Ball, G., Silva, A.S., Assis, M.C., Plotkowski, M.C. (2002) Type III secretion-mediated killing of endothelial cells by Pseudomonas aeruginosa. Microb. Pathog. 33, 153166.
  • [36]
    Miyata, S., Casey, M., Frank, D.W., Ausubel, F.M., Drenkard, E. (2003) Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun. 71, 24042413.
  • [37]
    Schulert, G.S., Feltman, H., Rabin, S.D., Martin, C.G., Battle, S.E., Rello, J., Hauser, A.R. (2003) Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J. Infect Dis. 188, 16951706.
  • [38]
    Hauser, A.R., Cobb, E., Bodi, M., Mariscal, D., Valles, J., Engel, J.N., Rello, J. (2002) Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit. Care Med. 30, 521528.
  • [39]
    Tomich, M., Griffith, A., Herfst, C.A., Burns, J.L., Mohr, C.D. (2003) Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect. Immun. 71, 14051415.
  • [40]
    Stevens, M.P., Friebel, A., Taylor, L.A., Wood, M.W., Brown, P.J., Hardt, W.D., Galyov, E.E. (2003) A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J. Bacteriol. 185, 49924996.
  • [41]
    Stevens, M.P., Wood, M.W., Taylor, L.A., Monaghan, P., Hawes, P., Jones, P.W., Wallis, T.S., Galyov, E.E. (2002) An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol. Microbiol. 46, 649659.
  • [42]
    Smith-Vaughan, H.C., Gal, D., Lawrie, P.M., Winstanley, C., Sriprakash, K.S., Currie, B.J. (2003) Ubiquity of putative type III secretion genes among clinical and environmental Burkholderia pseudomallei isolates in Northern Australia. J. Clin. Microbiol. 41, 883885.
  • [43]
    Rainbow, L., Hart, C.A., Winstanley, C. (2002) Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei. J. Med. Microbiol. 51, 374384.
  • [44]
    Tan, Y.P., Lin, Q., Wang, X.H., Joshi, S., Hew, C.L., Leung, K.Y. (2002) Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda. Infect. Immun. 70, 64756480.
  • [45]
    Stockbauer, K.E., Foreman-Wykert, A.K., Miller, J.F. (2003) Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol. 5, 123132.
  • [46]
    Kuwae, A., Ohishi, M., Watanabe, M., Nagai, M., Abe, A. (2003) BopB is a type III secreted protein in Bordetella bronchiseptica and is required for cytotoxicity against cultured mammalian cells. Cell Microbiol. 5, 973983.
  • [47]
    Burr, S.E., Stuber, K., Wahli, T., Frey, J. (2002) Evidence for a type III secretion system in Aeromonas salmonicida subsp. salmonicida. J. Bacteriol. 184, 59665970.
  • [48]
    Burr, S.E., Stuber, K., Frey, J. (2003) The ADP-ribosylating toxin, AexT, from Aeromonas salmonicida subsp. salmonicida is translocated via a type III secretion pathway. J. Bacteriol. 185, 65836591.
  • [49]
    Stuber, K., Burr, S.E., Braun, M., Wahli, T., Frey, J. (2003) Type III secretion genes in Aeromonas salmonicida subsp salmonicida are located on a large thermolabile virulence plasmid. J. Clin. Microbiol. 41, 38543856.
  • [50]
    Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., Iijima, Y., Najima, M., Nakano, M., Yamashita, A., Kubota, Y., Kimura, S., Yasunaga, T., Honda, T., Shinagawa, H., Hattori, M., Iida, T. (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 361, 743749.
  • [51]
    Ffrench-Constant, R.H., Waterfield, N., Burland, V., Perna, N.T., Daborn, P.J., Bowen, D., Blattner, F.R. (2000) A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Appl. Environ. Microbiol. 66, 33103329.
  • [52]
    Brazilian_National_Genome_Project_Consortium. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. USA 100 (2003) 11660–11665
  • [53]
    Collmer, A., Lindeberg, M., Petnicki-Ocwieja, T., Schneider, D.J., Alfano, J.R. (2002) Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol. 10, 462469.
  • [54]
    Jin, Q., Thilmony, R., Zwiesler-Vollick, J., He, S.Y. (2003) Type III protein secretion in Pseudomonas syringae. Microbes Infect. 5, 301310.
  • [55]
    Greenberg, J.T., Vinatzer, B.A. (2003) Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. Curr. Opin. Microbiol. 6, 2028.
  • [56]
    Collmer, A., Badel, J.L., Charkowski, A.O., Deng, W.L., Fouts, D.E., Ramos, A.R., Rehm, A.H., Anderson, D.M., Schneewind, O., Van Dijk, K., Alfano, J.R. (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Natl. Acad. Sci. USA 97, 87708777.
  • [57]
    Perino, C., Gaudriault, S., Vian, B., Barny, M.A. (1999) Visualization of harpin secretion in planta during infection of apple seedlings by Erwinia amylovora. Cell Microbiol. 1, 131141.
  • [58]
    Jin, Q., Hu, W., Brown, I., McGhee, G., Hart, P., Jones, A.L., He, S.Y. (2001) Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40, 11291139.
  • [59]
    Kim, J.F., Wei, Z.M., Beer, S.V. (1997) The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. J. Bacteriol. 179, 16901697.
  • [60]
    Rantakari, A., Virtaharju, O., Vahamiko, S., Taira, S., Palva, E.T., Saarilahti, H.T., Romantschuk, M. (2001) Type III secretion contributes to the pathogenesis of the soft-rot pathogen Erwinia carotovora: partial characterization of the hrp gene cluster. Mol. Plant Microbe Interact. 14, 962968.
  • [61]
    Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J.C., Cattolico, L., Chandler, M., Choisne, N., Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., Robert, C., Saurin, W., Schiex, T., Siguier, P., Thebault, P., Whalen, M., Wincker, P., Levy, M., Weissenbach, J., Boucher, C.A. (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497502.
  • [62]
    Brito, B., Aldon, D., Barberis, P., Boucher, C., Genin, S. (2002) A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol. Plant Microbe Interact. 15, 109119.
  • [63]
    Buttner, D., Noel, L., Thieme, F., Bonas, U. (2003) Genomic approaches in Xanthomonas campestris pv. vesicatoria allow fishing for virulence genes. J. Biotechnol. 106, 203214.
  • [64]
    Buttner, D., Bonas, U. (2002) Getting across-bacterial type III effector proteins on their way to the plant cell. EMBO J. 21, 53135322.
  • [65]
    Pollack, M. (1984) The virulence of Pseudomonas aeruginosa. Rev. Infect Dis. 6 (Suppl 3), S617S626.
  • [66]
    Jain, M., Ramirez, D., Seshadri, R., Cullina, J.F., Powers, C.A., Schulert, G.S., Bar-Meir, M., Sullivan, C.L., McColley, S.A., Hauser, A.R. (2004) Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J. Clin. Microbiol. 42, 52295237.
  • [67]
    Murray, R.A., Lee, C.A. (2000) Invasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection. Infect. Immun. 68, 50505055.
  • [68]
    Morgan, E., Campbell, J.D., Rowe, S.C., Bispham, J., Stevens, M.P., Bowen, A.J., Barrow, P.A., Maskell, D.J., Wallis, T.S. (2004) Identification of host-specific colonization factors of Salmonella enterica serovar typhimurium. Mol. Microbiol. 54, 9941010.
  • [69]
    Krishnan, H.B. (2002) NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, Iis localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J. Bacteriol. 184, 831839.
  • [70]
    Marie, C., Deakin, W.J., Viprey, V., Kopcinska, J., Golinowski, W., Krishnan, H.B., Perret, X., Broughton, W.J. (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol. Plant Microbe Interact. 16, 743751.
  • [71]
    Krause, A., Doerfel, A., Gottfert, M. (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 15, 12281235.
  • [72]
    Bartsev, A.V., Boukli, N.M., Deakin, W.J., Staehelin, C., Broughton, W.J. (2003) Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett. 554, 271274.
  • [73]
    Rainey, P.B. (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1, 243257.
  • [74]
    Preston, G.M., Bertrand, N., Rainey, P.B. (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol. Microbiol. 41, 9991014.
  • [75]
    Rezzonico, F., Defago, G., Moenne-Loccoz, Y. (2004) Comparison of ATPase-encoding type III secretion system hrcN genes in biocontrol fluorescent Pseudomonads and in phytopathogenic proteobacteria. Appl. Environ. Microbiol. 70, 51195131.
  • [76]
    Dale, C., Plague, G.R., Wang, B., Ochman, H., Moran, N.A. (2002) Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc. Natl. Acad. Sci. USA 99, 1239712402.
  • [77]
    Dale, C., Young, S.A., Haydon, D.T., Welburn, S.C. (2001) The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc. Natl. Acad. Sci. USA 98, 18831888.
  • [78]
    Stieritz, D.D., Holder, I.A. (1975) Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J. Infect Dis. 131, 688691.
  • [79]
    Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., Ausubel, F.M. (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 18991902.
  • [80]
    Jander, G., Rahme, L.G., Ausubel, F.M. (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182, 38433845.
  • [81]
    D'Argenio, D.A., Gallagher, L.A., Berg, C.A., Manoil, C. (2001) Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183, 14661471.
  • [82]
    Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., Ausubel, F.M. (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96, 4756.
  • [83]
    Pukatzki, S., Kessin, R.H., Mekalanos, J.J. (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 99, 31593164.
  • [84]
    Fauvarque, M.O., Bergeret, E., Chabert, J., Dacheux, D., Satre, M., Attree, I. (2002) Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb. Pathog. 32, 287295.
  • [85]
    Guttman, D.S. (2004) Plants as models for the study of human pathogenesis. Biotechnol. Adv. 22, 363382.
  • [86]
    Hsueh, P.R., Teng, L.J., Pan, H.J., Chen, Y.C., Sun, C.C., Ho, S.W., Luh, K.T. (1998) Outbreak of Pseudomonas fluorescens bacteremia among oncology patients. J. Clin. Microbiol. 36, 29142917.
  • [87]
    De Champs, C., le Seaux, S., Dubost, J.J., Boisgard, S., Sauvezie, B., Sirot, J. (2000) Isolation of Pantoea agglomerans in two cases of septic monoarthritis after plant thorn and wood sliver injuries. J. Clin. Microbiol. 38, 460461.
  • [88]
    Kratz, A., Greenberg, D., Barki, Y., Cohen, E., Lifshitz, M. (2003) Pantoea agglomerans as a cause of septic arthritis after palm tree thorn injury; case report and literature review. Arch. Dis. Child 88, 542544.
  • [89]
    Ulloa-Gutierrez, R., Moya, T., Avila-Aguero, M.L. Pantoea agglomerans and thorn-associated suppurative arthritis. Pediatr. Infect Dis. J. >23 2004. 690
  • [90]
    Shao, F., Merritt, P.M., Bao, Z., Innes, R.W., Dixon, J.E. (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575588.
  • [91]
    Yoon, S., Liu, Z., Eyobo, Y., Orth, K. (2003) Yersinia effector YopJ inhibits yeast MAPK signaling pathways by an evolutionarily conserved mechanism. J. Biol. Chem. 278, 21312135.
  • [92]
    Trosky, J.E., Mukherjee, S., Burdette, D.L., Roberts, M., McCarter, L., Siegel, R.M., Orth, K. Inhibition of MAPK signalling pathways by VopA from Vibrio parahaemolyticus. J. Biol. Chem. 2004
  • [93]
    Nejedlik, L., Pierfelice, T., Geiser, J.R. (2004) Actin distribution is disrupted upon expression of Yersinia YopO/YpkA in yeast. Yeast 21, 759768.
  • [94]
    Jamir, Y., Guo, M., Oh, H.S., Petnicki-Ocwieja, T., Chen, S., Tang, X., Dickman, M.B., Collmer, A., Alfano, J.R. (2004) Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J. 37, 554565.
  • [95]
    Benabdillah, R., Mota, L.J., Lutzelschwab, S., Demoinet, E., Cornelis, G.R. (2004) Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb. Pathog. 36, 247261.
  • [96]
    Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y.H., Smith, H.O. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 6674.
  • [97]
    Heidelberg, J.F., Seshadri, R., Haveman, S.A., Hemme, C.L., Paulsen, I.T., Kolonay, J.F., Eisen, J.A., Ward, N., Methe, B., Brinkac, L.M., Daugherty, S.C., Deboy, R.T., Dodson, R.J., Durkin, A.S., Madupu, R., Nelson, W.C., Sullivan, S.A., Fouts, D., Haft, D.H., Selengut, J., Peterson, J.D., Davidsen, T.M., Zafar, N., Zhou, L., Radune, D., Dimitrov, G., Hance, M., Tran, K., Khouri, H., Gill, J., Utterback, T.R., Feldblyum, T.V., Wall, J.D., Voordouw, G., Fraser, C.M. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22, 554559.
  • [98]
    Johnson, C.C., Finegold, S.M. (1987) Uncommonly encountered, motile, anaerobic gram-negative bacilli associated with infection. Rev. Infect Dis. 9, 11501162.
  • [99]
    Goldstein, E.J., Citron, D.M., Peraino, V.A., Cross, S.A. (2003) Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J. Clin. Microbiol. 41, 27522754.
  • [100]
    H. Schlesner, The genus verrucomicrobium, in: M. Dworkin (Ed.), The Prokaryotes: An Evolving Electronic Resource for the Mircobiological Community, vol. p., Springer-Verlag, New York, 2004
  • [101]
    Gophna, U., Ron, E.Z., Graur, D. (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151163.
  • [102]
    Greub, G., Raoult, D. (2004) Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 17, 413433.
  • [103]
    Horn, M., Collingro, A., Schmitz-Esser, S., Beier, C.L., Purkhold, U., Fartmann, B., Brandt, P., Nyakatura, G.J., Droege, M., Frishman, D., Rattei, T., Mewes, H.W., Wagner, M. (2004) Illuminating the evolutionary history of chlamydiae. Science 304, 728730.
  • [104]
    Kim, J.F. (2001) Revisiting the chlamydial type III protein secretion system: clues to the origin of type III protein secretion. Trends Genet. 17, 6569.
  • [105]
    Greub, G., Raoult, D. (2002) Parachlamydiaceae: potential emerging pathogens. Emerg. Infect. Dis. 8, 625630.
  • [106]
    Hacker, J., Kaper, J.B. (2000) Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641679.
  • [107]
    Winstanley, C., Hart, C.A. (2001) Type III secretion systems and pathogenicity islands. J. Med. Microbiol. 50, 116126.
  • [108]
    Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R.L., Zhao, Q., Koonin, E.V., Davis, R.W. (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754759.
  • [109]
    Betts, H.J., Chaudhuri, R.R., Pallen, M.J. (2004) An analysis of type-III secretion gene clusters in Chromobacterium violaceum. Trends Microbiol. 12, 476482.
  • [110]
    Worley, M.J., Ching, K.H., Heffron, F. (2000) Salmonella SsrB activates a global regulon of horizontally acquired genes. Mol. Microbiol. 36, 749761.
  • [111]
    Kujat Choy, S.L., Boyle, E.C., Gal-Mor, O., Goode, D.L., Valdez, Y., Vallance, B.A., Finlay, B.B. (2004) SseK1 and SseK2 are novel translocated proteins of Salmonella enterica serovar typhimurium. Infect. Immun. 72, 51155125.
  • [112]
    Figueroa-Bossi, N., Uzzau, S., Maloriol, D., Bossi, L. (2001) Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol. Microbiol. 39, 260271.
  • [113]
    Uzzau, S., Figueroa-Bossi, N., Rubino, S., Bossi, L. (2001) Epitope tagging of chromosomal genes in Salmonella. Proc. Natl. Acad. Sci. USA 98, 1526415269.
  • [114]
    Mundy, R., Jenkins, C., Yu, J., Smith, H., Frankel, G. (2004) Distribution of espI among clinical enterohaemorrhagic and enteropathogenic Escherichia coli isolates. J. Med. Microbiol. 53, 11451149.
  • [115]
    Mundy, R., Petrovska, L., Smollett, K., Simpson, N., Wilson, R.K., Yu, J., Tu, X., Rosenshine, I., Clare, S., Dougan, G., Frankel, G. (2004) Identification of a novel Citrobacter rodentium type III secreted protein, EspI, and roles of this and other secreted proteins in infection. Infect. Immun. 72, 22882302.
  • [116]
    Marches, O., Ledger, T.N., Boury, M., Ohara, M., Tu, X., Goffaux, F., Mainil, J., Rosenshine, I., Sugai, M., De Rycke, J., Oswald, E. (2003) Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol. 50, 15531567.
  • [117]
    Read, T.D., Brunham, R.C., Shen, C., Gill, S.R., Heidelberg, J.F., White, O., Hickey, E.K., Peterson, J., Utterback, T., Berry, K., Bass, S., Linher, K., Weidman, J., Khouri, H., Craven, B., Bowman, C., Dodson, R., Gwinn, M., Nelson, W., DeBoy, R., Kolonay, J., McClarty, G., Salzberg, S.L., Eisen, J., Fraser, C.M. (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28, 13971406.
  • [118]
    Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C.G., Ohtsubo, E., Nakayama, K., Murata, T., Tanaka, M., Tobe, T., Iida, T., Takami, H., Honda, T., Sasakawa, C., Ogasawara, N., Yasunaga, T., Kuhara, S., Shiba, T., Hattori, M., Shinagawa, H. (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 1122.
  • [119]
    Perna, N.T. G. Plunkett III Burland, V., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F., Evans, P.S., Gregor, J., Kirkpatrick, H.A., Posfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E.J., Davis, N.W., Lim, A., Dimalanta, E.T., Potamousis, K.D., Apodaca, J., Anantharaman, T.S., Lin, J., Yen, G., Schwartz, D.C., Welch, R.A., Blattner, F.R. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529533.
  • [120]
    Ren, C.P., Chaudhuri, R.R., Fivian, A., Bailey, C.M., Antonio, M., Barnes, W.M., Pallen, M.J. (2004) The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J. Bacteriol. 186, 35473560.
  • [121]
    Makino, S., Tobe, T., Asakura, H., Watarai, M., Ikeda, T., Takeshi, K., Sasakawa, C. (2003) Distribution of the secondary type III secretion system locus found in enterohemorrhagic Escherichia coli O157:H7 isolates among Shiga toxin-producing E. coli strains. J. Clin. Microbiol. 41, 23412347.
  • [122]
    Hartleib, S., Prager, R., Hedenström, I., Löfdahl, S., Tschäpe, H. (2003) Prevalence of the new, SPI1-like pathogenicity island ETT2 among Escherichia coli. Int. J. Med. Microbiol. 292, 487493.
  • [123]
    Miyazaki, J., Ba-Thein, W., Kumao, T., Akaza, H., Hayashi, H. (2002) Identification of a type III secretion system in uropathogenic Escherichia coli. FMR Microbiol. Lett. 212, 221228.
  • [124]
    Pallen, M.J. (2003) Glucoamylase-like domains in the α- and β-subunits of phosphorylase kinase. Protein Sci. 12, 18041807.
  • [125]
    Lawrence, J.G., Hendrix, R.W., Casjens, S. (2001) Where are the pseudogenes in bacterial genomes. Trends Microbiol. 9, 535540.
  • [126]
    C.-P. Ren, S.A. Beatson, J. Parkhill, M.J. Pallen. (2005). Flag2, an ancestral gene cluster associated with a novel RpoN-dependent lateral flagellar system from Escherichia coli. J. Bacteriol. 187 in press
  • [127]
    Deng, W., Burland, V. G. Plunkett III Boutin, A., Mayhew, G.F., Liss, P., Perna, N.T., Rose, D.J., Mau, B., Zhou, S., Schwartz, D.C., Fetherston, J.D., Lindler, L.E., Brubaker, R.R., Plano, G.V., Straley, S.C., McDonough, K.A., Nilles, M.L., Matson, J.S., Blattner, F.R., Perry, R.D. (2002) Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 46014611.
  • [128]
    Parkhill, J., Dougan, G., James, K.D., Thomson, N.R., Pickard, D., Wain, J., Churcher, C., Mungall, K.L., Bentley, S.D., Holden, M.T., Sebaihia, M., Baker, S., Basham, D., Brooks, K., Chillingworth, T., Connerton, P., Cronin, A., Davis, P., Davies, R.M., Dowd, L., White, N., Farrar, J., Feltwell, T., Hamlin, N., Haque, A., Hien, T.T., Holroyd, S., Jagels, K., Krogh, A., Larsen, T.S., Leather, S., Moule, S., O'Gaora, P., Parry, C., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S., Barrell, B.G. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848852.
  • [129]
    Zhang, L., Chaudhuri, R.R., Constantinidou, C., Hobman, J.L., Patel, M.D., Jones, A.C., Roe, A.J., Vlisidou, I., Shaw, R.K., Stevens, M.P., Gally, D.L., Knutton, S., Frankel, G.M., Penn, C.W., Pallen, M.J. Regulators encoded in the ETT2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic Escherichia coli O157:H7. Infect Immun. >72 2004. 7282–7293
  • [130]
    Carroll, L., Tenniel, J. Alice in Wonderland >xiii, 2001. Dover Publications, Mineola, NY
  • [131]
    McNally, A., Roe, A.J., Simpson, S., Thomson-Carter, F.M., Hoey, D.E., Currie, C., Chakraborty, T., Smith, D.G., Gally, D.L. (2001) Differences in levels of secreted locus of enterocyte effacement proteins between human disease-associated and bovine Escherichia coli O157. Infect. Immun. 69, 51075114.
  • [132]
    Ebel, F., Deibel, C., Kresse, A.U., Guzman, C.A., Chakraborty, T. (1996) Temperature- and medium-dependent secretion of proteins by Shiga toxin-producing Escherichia coli. Infect. Immun. 64, 44724479.
  • [133]
    Friedberg, D., Umanski, T., Fang, Y., Rosenshine, I. (1999) Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Mol. Microbiol. 34, 941952.
  • [134]
    Yona-Nadler, C., Umanski, T., Aizawa, S., Friedberg, D., Rosenshine, I. (2003) Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohaemorrhagic Escherichia coli. Microbiology 149, 877884.
  • [135]
    Grant, A.J., Farris, M., Alefounder, P., Williams, P.H., Woodward, M.J., O'Connor, C.D. (2003) Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol. Microbiol. 48, 507521.
  • [136]
    Deiwick, J., Nikolaus, T., Shea, J.E., Gleeson, C., Holden, D.W., Hensel, M. (1998) Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents. J. Bacteriol. 180, 47754780.
  • [137]
    Kelly, A., Goldberg, M.D., Carroll, R.K., Danino, V., Hinton, J.C., Dorman, C.J. (2004) A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar typhimurium. Microbiology 150, 20372053.
  • [138]
    Goodier, R.I., Ahmer, B.M. (2001) SirA orthologs affect both motility and virulence. J. Bacteriol. 183, 22492258.
  • [139]
    Teplitski, M., Goodier, R.I., Ahmer, B.M. (2003) Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella. J. Bacteriol. 185, 72577265.
  • [140]
    Ellermeier, C.D., Slauch, J.M. (2003) RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar typhimurium. J. Bacteriol. 185, 50965108.
  • [141]
    Arricau, N., Hermant, D., Waxin, H., Ecobichon, C., Duffey, P.S., Popoff, M.Y. (1998) The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol. Microbiol. 29, 835850.
  • [142]
    Ellermeier, C.D., Slauch, J.M. (2004) RtsA coordinately regulates DsbA and the Salmonella pathogenicity island 1 type III secretion system. J. Bacteriol. 186, 6879.
  • [143]
    Stecher, B., Hapfelmeier, S., Muller, C., Kremer, M., Stallmach, T., Hardt, W.D. (2004) Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar typhimurium colitis in streptomycin-pretreated mice. Infect. Immun. 72, 41384150.
  • [144]
    Young, B.M., Young, G.M. (2002) YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J. Bacteriol. 184, 13241334.
  • [145]
    Lee, S.H., Galan, J.E. (2004) Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51, 483495.
  • [146]
    Park, K.S., Ono, T., Rokuda, M., Jang, M.H., Okada, K., Iida, T., Honda, T. (2004) Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72, 66596665.
  • [147]
    Ulrich, R.L., DeShazer, D. (2004) Type III secretion: a virulence factor delivery system essential for the pathogenicity of Burkholderia mallei. Infect. Immun. 72, 11501154.
  • [148]
    Stevens, M.P., Haque, A., Atkins, T., Hill, J., Wood, M.W., Easton, A., Nelson, M., Underwood-Fowler, C., Titball, R.W., Bancroft, G.J., Galyov, E.E. (2004) Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 150, 26692676.
  • [149]
    Moore, R.A., Reckseidler-Zenteno, S., Kim, H., Nierman, W., Yu, Y., Tuanyok, A., Warawa, J., DeShazer, D., Woods, D.E. (2004) Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Infect. Immun. 72, 41724187.
  • [150]
    Foultier, B., Troisfontaines, P., Muller, S., Opperdoes, F.R., Cornelis, G.R. (2002) Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J. Mol. Evol. 55, 3751.
  • [151]
    Foultier, B., Troisfontaines, P., Vertommen, D., Marenne, M.N., Rider, M., Parsot, C., Cornelis, G.R. (2003) Identification of substrates and chaperone from the Yersinia enterocolitica 1B Ysa type III secretion system. Infect. Immun. 71, 242253.
  • [152]
    Walker, K.A., Miller, V.L. (2004) Regulation of the Ysa type III secretion system of Yersinia enterocolitica by YsaE/SycB and YsrS/YsrR. J. Bacteriol. 186, 40564066.
  • [153]
    Page, A.L., Parsot, C. (2002) Chaperones of the type III secretion pathway: jacks of all trades. Mol. Microbiol. 46, 111.
  • [154]
    Knutton, S., Rosenshine, I., Pallen, M.J., Nisan, I., Neves, B.C., Bain, C., Wolff, C., Dougan, G., Frankel, G. (1998) A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 21662176.
  • [155]
    Jin, Q., He, S.Y. (2001) Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science 294, 25562558.
  • [156]
    He, S.Y., Jin, Q. (2003) The Hrp pilus: learning from flagella. Curr. Opin. Microbiol. 6, 1519.
  • [157]
    Roine, E., Wei, W., Yuan, J., Nurmiaho-Lassila, E.L., Kalkkinen, N., Romantschuk, M., He, S.Y. (1997) Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 94, 34593464.
  • [158]
    Buttner, D., Bonas, U. (2002) Port of entry – the type III secretion translocon. Trends Microbiol. 10, 186192.
  • [159]
    Delahay, R.M., Knutton, S., Shaw, R.K., Hartland, E.L., Pallen, M.J., Frankel, G. (1999) The coiled-coil domain of EspA is essential for the assembly of the type III secretion translocon on the surface of enteropathogenic Escherichia coli. J. Biol. Chem. 274, 3596935974.
  • [160]
    Cornelis, G.R. (2002) Yersinia type III secretion: send in the effectors. J. Cell Biol. 158, 401408.
  • [161]
    Guttman, D.S., Vinatzer, B.A., Sarkar, S.F., Ranall, M.V., Kettler, G., Greenberg, J.T. (2002) A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295, 17221726.
  • [162]
    Waterman, S.R., Holden, D.W. (2003) Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol. 5, 501511.
  • [163]
    Zwiesler-Vollick, J., Plovanich-Jones, A.E., Nomura, K., Bandyopadhyay, S., Joardar, V., Kunkel, B.N., He, S.Y. (2002) Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol. Microbiol. 45, 12071218.
  • [164]
    Young, G.M., Schmiel, D.H., Miller, V.L. (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96, 64566461.
  • [165]
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.
  • [166]
    Rosqvist, R., Hakansson, S., Forsberg, A., Wolf-Watz, H. (1995) Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. EMBO J. 14, 41874195.
  • [167]
    Jackson, M.W., Plano, G.V. (1999) DsbA is required for stable expression of outer membrane protein YscC and for efficient Yop secretion in Yersinia pestis. J. Bacteriol. 181, 51265130.
  • [168]
    M.J. Pallen, S.A. Beatson, C.M. Bailey, Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol., in press
  • [169]
    Kimbrough, T.G., Miller, S.I. (2000) Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl. Acad. Sci. USA 97, 1100811013.
  • [170]
    Pallen, M., Chaudhuri, R., Khan, A. (2002) Bacterial FHA domains: neglected players in the phospho-threonine signalling game. Trends Microbiol. 10, 556563.
  • [171]
    Yeats, C., Bateman, A. (2003) The BON domain: a putative membrane-binding domain. Trends Biochem. Sci. 28, 352355.
  • [172]
    Marlovits, T.C., Kubori, T., Sukhan, A., Thomas, D.R., Galan, J.E., Unger, V.M. (2004) Structural insights into the assembly of the type III secretion needle complex. Science 306, 10401042.
  • [173]
    Jackson, M.W., Plano, G.V. (2000) Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FMR Microbiol. Lett. 186, 8590.
  • [174]
    Minamino, T., MacNab, R.M. (2000) FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol. Microbiol. 37, 14941503.
  • [175]
    Fadouloglou, V.E., Tampakaki, A.P., Glykos, N.M., Bastaki, M.N., Hadden, J.M., Phillips, S.E., Panopoulos, N.J., Kokkinidis, M. (2004) Structure of HrcQB-C, a conserved component of the bacterial type III secretion systems. Proc. Natl. Acad. Sci. USA 101, 7075.
  • [176]
    Wilson, R.K., Shaw, R.K., Daniell, S., Knutton, S., Frankel, G. (2001) Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cell Microbiol. 3, 753762.
  • [177]
    Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C., Abe, A. (2001) Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98, 1163811643.
  • [178]
    Hoiczyk, E., Blobel, G. (2001) Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl. Acad. Sci. USA 98, 46694674.
  • [179]
    Sukhan, A., Kubori, T., Galan, J.E. (2003) Synthesis and localization of the Salmonella SPI-1 type III secretion needle complex proteins PrgI and PrgJ. J. Bacteriol. 185, 34803483.
  • [180]
    Kubori, T., Sukhan, A., Aizawa, S.I., Galan, J.E. (2000) Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97, 1022510230.
  • [181]
    Tamano, K., Aizawa, S., Katayama, E., Nonaka, T., Imajoh-Ohmi, S., Kuwae, A., Nagai, S., Sasakawa, C. (2000) Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 38763887.
  • [182]
    Elliott, S.J., Wainwright, L.A., McDaniel, T.K., Jarvis, K.G., Deng, Y.K., Lai, L.C., McNamara, B.P., Donnenberg, M.S., Kaper, J.B. (1998) The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28, 14.
  • [183]
    Cordes, F.S., Komoriya, K., Larquet, E., Yang, S., Egelman, E.H., Blocker, A., Lea, S.M. (2003) Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278, 1710317107.
  • [184]
    M.J. Pallen, C.W. Penn, R.R. Chaudhuri, Bacterial flagellar diversity in the post-genomic era.Trends Microbiol., in press
  • [185]
    Magdalena, J., Hachani, A., Chamekh, M., Jouihri, N., Gounon, P., Blocker, A., Allaoui, A. (2002) Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J. Bacteriol. 184, 34333441.
  • [186]
    Tamano, K., Katayama, E., Toyotome, T., Sasakawa, C. (2002) Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J. Bacteriol. 184, 12441252.
  • [187]
    Journet, L., Agrain, C., Broz, P., Cornelis, G.R. (2003) The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302, 17571760.
  • [188]
    Edqvist, P.J., Olsson, J., Lavander, M., Sundberg, L., Forsberg, A., Wolf-Watz, H., Lloyd, S.A. (2003) YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J. Bacteriol. 185, 22592266.
  • [189]
    Thomas, N.A., Finlay, B.B. (2004) Pathogens: bacterial needles ruled to length and specificity. Curr. Biol. 14, R192R194.
  • [190]
    Marshall, W.F. Cellular length control systems. Annu. Rev. Cell Dev. Biol. 2004
  • [191]
    Makishima, S., Komoriya, K., Yamaguchi, S., Aizawa, S.I. (2001) Length of the flagellar hook and the capacity of the type III export apparatus. Science 291, 24112413.
  • [192]
    Pallen, M.J., Dougan, G., Frankel, G. (1997) Coiled-coil domains in proteins secreted by type III secretion systems. Mol. Microbiol. 25, 423425.
  • [193]
    Daniell, S.J., Delahay, R.M., Shaw, R.K., Hartland, E.L., Pallen, M.J., Booy, F., Ebel, F., Knutton, S., Frankel, G. (2001) Coiled-coil domain of enteropathogenic Escherichia coli type III secreted protein EspD is involved in EspA filament-mediated cell attachment and hemolysis. Infect. Immun. 69, 40554064.
  • [194]
    Delahay, R.M., Frankel, G. (2002) Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol. Microbiol. 45, 905916.
  • [195]
    Homma, M., DeRosier, D.J., Macnab, R.M. (1990) Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213, 819832.
  • [196]
    Daniell, S.J., Kocsis, E., Morris, E., Knutton, S., Booy, F.P., Frankel, G. (2003) 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol. Microbiol. 49, 301308.
  • [197]
    Samatey, F.A., Imada, K., Nagashima, S., Vonderviszt, F., Kumasaka, T., Yamamoto, M., Namba, K. (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331337.
  • [198]
    Yonekura, K., Maki-Yonekura, S., Namba, K. (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643650.
  • [199]
    Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I., Fujiyoshi, Y., Namba, K. (1996) Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proc. Natl. Acad. Sci. USA 93, 1510815113.
  • [200]
    Yip, C.K., Finlay, B.B., Strynadka, N.C.J. Structural charachterization of a type III secretion system filament protein in complex with its chaperone. Nat. Struct. Mol. Biol. 2004
  • [201]
    Wattiau, P., Woestyn, S., Cornelis, G.R. (1996) Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol. 20, 255262.
  • [202]
    Wattiau, P., Bernier, B., Deslee, P., Michiels, T., Cornelis, G.R. (1994) Individual chaperones required for Yop secretion by Yersinia. Proc. Natl. Acad. Sci. USA 91, 1049310497.
  • [203]
    Aldridge, P., Hughes, K.T. (2001) How and when are substrates selected for type III secretion. Trends Microbiol. 9, 209214.
  • [204]
    Birtalan, S., Ghosh, P. (2001) Structure of the Yersinia type III secretory system chaperone SycE. Nat. Struct. Biol. 8, 974978.
  • [205]
    Day, J.B., Guller, I., Plano, G.V. (2000) Yersinia pestis YscG protein is a Syc-like chaperone that directly binds yscE. Infect. Immun. 68, 64666471.
  • [206]
    Evdokimov, A.G., Tropea, J.E., Routzahn, K.M., Waugh, D.S. (2002) Three-dimensional structure of the type III secretion chaperone SycE from Yersinia pestis. Acta Crystallogr. D: Biol. Crystallogr. 58, 398406.
  • [207]
    Luo, Y., Bertero, M.G., Frey, E.A., Pfuetzner, R.A., Wenk, M.R., Creagh, L., Marcus, S.L., Lim, D., Sicheri, F., Kay, C., Haynes, C., Finlay, B.B., Strynadka, N.C. (2001) Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 8, 10311036.
  • [208]
    Stebbins, C.E., Galan, J.E. (2001) Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 7781.
  • [209]
    Van Eerde, A., Hamiaux, C., Perez, J., Parsot, C., Dijkstra, B.W. (2004) Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity. EMBO Rep. 5, 477483.
  • [210]
    Phan, J., Tropea, J.E., Waugh, D.S. (2004) Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2. Acta Crystallogr. D: Biol. Crystallogr. 60, 15911599.
  • [211]
    Frank, D.W., Iglewski, B.H. (1991) Cloning and sequence analysis of a trans-regulatory locus required for exoenzyme S synthesis in Pseudomonas aeruginosa. J. Bacteriol. 173, 64606468.
  • [212]
    Dasgupta, N., Lykken, G.L., Wolfgang, M.C., Yahr, T.L. (2004) A novel anti-anti-activator mechanism regulates expression of the Pseudomonas aeruginosa type III secretion system. Mol. Microbiol. 53, 297308.
  • [213]
    Cambronne, E.D., Sorg, J.A., Schneewind, O. (2004) Binding of SycH chaperone to YscM1 and YscM2 activates effector yop expression in Yersinia enterocolitica. J. Bacteriol. 186, 829841.
  • [214]
    Cambronne, E.D., Schneewind, O. (2002) Yersinia enterocolitica type III secretion: yscM1 and yscM2 regulate yop gene expression by a posttranscriptional mechanism that targets the 5′ untranslated region of yop mRNA. J. Bacteriol. 184, 58805893.
  • [215]
    Francis, M.S., Lloyd, S.A., Wolf-Watz, H. (2001) The type III secretion chaperone LcrH co-operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis. Mol. Microbiol. 42, 10751093.
  • [216]
    Darwin, K.H., Miller, V.L. (2000) The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes. Mol. Microbiol. 35, 949960.
  • [217]
    Darwin, K.H., Miller, V.L. (2001) Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J. 20, 18501862.
  • [218]
    Pallen, M.J., Francis, M.S., Futterer, K. (2003) Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators. FMR Microbiol. Lett. 223, 5360.
  • [219]
    Evdokimov, A.G., Phan, J., Tropea, J.E., Routzahn, K.M., Peters, H.K., Pokross, M., Waugh, D.S. (2003) Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion. Nat. Struct. Biol. 10, 789793.
  • [220]
    Creasey, E.A., Friedberg, D., Shaw, R.K., Umanski, T., Knutton, S., Rosenshine, I., Frankel, G. (2003) CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149, 36393647.
  • [221]
    Petnicki-Ocwieja, T., Schneider, D.J., Tam, V.C., Chancey, S.T., Shan, L., Jamir, Y., Schechter, L.M., Janes, M.D., Buell, C.R., Tang, X., Collmer, A., Alfano, J.R. (2002) Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 99, 76527657.
  • [222]
    Fouts, D.E., Abramovitch, R.B., Alfano, J.R., Baldo, A.M., Buell, C.R., Cartinhour, S., Chatterjee, A.K., D'Ascenzo, M., Gwinn, M.L., Lazarowitz, S.G., Lin, N.C., Martin, G.B., Rehm, A.H., Schneider, D.J., Van Dijk, K., Tang, X., Collmer, A. (2002) Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA 99, 22752280.
  • [223]
    Falkow, S. (1988) Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect Dis. 10 (Suppl 2), S274S276.
  • [224]
    Charpentier, X., Oswald, E. (2004) Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 β-lactamase as a new fluorescence-based reporter. J. Bacteriol. 186, 54865495.
  • [225]
    Campellone, K.G., Robbins, D., Leong, J.M. (2004) EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217228.
  • [226]
    Garmendia, J., Phillips, A.D., Carlier, M.F., Chong, Y., Schuller, S., Marches, O., Dahan, S., Oswald, E., Shaw, R.K., Knutton, S., Frankel, G. (2004) TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol. 6, 11671183.
  • [227]
    C. Steegborn, O., Danot, R., Huber, T. Clausen, Crystal structure of transcription factor MalT domain III: a novel helix repeat fold implicated in regulated oligomerization. In: Structure (Camb) Eds., vol. 9, 2001, pp. 1051–1060
  • [228]
    Nguyen, L., Paulsen, I.T., Tchieu, J., Hueck, C.J. M.H. Saier Jr. (2000) Phylogenetic analyses of the constituents of Type III protein secretion systems. J. Mol. Microbiol. Biotechnol. 2, 125144.
  • [229]
    Kresse, A.U., Beltrametti, F., Muller, A., Ebel, F., Guzman, C.A. (2000) Characterization of SepL of enterohemorrhagic Escherichia coli. J. Bacteriol. 182, 64906498.
  • [230]
    O'Connell, C.B., Creasey, E.A., Knutton, S., Elliott, S., Crowther, L.J., Luo, W., Albert, M.J., Kaper, J.B., Frankel, G., Donnenberg, M.S. (2004) SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD. Mol. Microbiol. 52, 16131625.
  • [231]
    Ferracci, F., Day, J.B., Ezelle, H.J., Plano, G.V. (2004) Expression of a functional secreted YopN-TyeA hybrid protein in Yersinia pestis is the result of a +1 translational frameshift event. J. Bacteriol. 186, 51605166.
  • [232]
    Fields, K.A., Hackstadt, T. (2000) Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 38, 10481060.
  • [233]
    Coombes, B.K., Brown, N.F., Valdez, Y., Brumell, J.H., Finlay, B.B. Expression and secretion of salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J. Biol. Chem. 2004
  • [234]
    Cheng, L.W., Schneewind, O. (2000) Yersinia enterocolitica TyeA, an intracellular regulator of the type III machinery, is required for specific targeting of YopE, YopH, YopM, and YopN into the cytosol of eukaryotic cells. J. Bacteriol. 182, 31833190.
  • [235]
    Cheng, L.W., Kay, O., Schneewind, O. (2001) Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J. Bacteriol. 183, 52935301.
  • [236]
    Iriarte, M., Sory, M.P., Boland, A., Boyd, A.P., Mills, S.D., Lambermont, I., Cornelis, G.R. (1998) TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. EMBO J. 17, 19071918.
  • [237]
    Sundberg, L., Forsberg, A. (2003) TyeA of Yersinia pseudotuberculosis is involved in regulation of Yop expression and is required for polarized translocation of Yop effectors. Cell Microbiol. 5, 187202.
  • [238]
    Lee, V.T., Mazmanian, S.K., Schneewind, O. (2001) A program of Yersinia enterocolitica type III secretion reactions is activated by specific signals. J. Bacteriol. 183, 49704978.
  • [239]
    Day, J.B., Ferracci, F., Plano, G.V. (2003) Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies. Mol. Microbiol. 47, 807823.
  • [240]
    Marenne, M.N., Journet, L., Mota, L.J., Cornelis, G.R. (2003) Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV, YscF and YopN. Microb. Pathog. 35, 243258.
  • [241]
    Kubori, T., Galan, J.E. (2002) Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J. Bacteriol. 184, 46994708.
  • [242]
    Ginocchio, C., Pace, J., Galan, J.E. (1992) Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc. Natl. Acad. Sci. USA 89, 59765980.
  • [243]
    Zierler, M.K., Galan, J.E. (1995) Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect. Immun. 63, 40244028.
  • [244]
    Lee, V.T., Anderson, D.M., Schneewind, O. (1998) Targeting of Yersinia Yop proteins into the cytosol of HeLa cells: one-step translocation of YopE across bacterial and eukaryotic membranes is dependent on SycE chaperone. Mol. Microbiol. 28, 593601.
  • [245]
    Nilles, M.L., Williams, A.W., Skrzypek, E., Straley, S.C. (1997) Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J. Bacteriol. 179, 13071316.
  • [246]
    Lee, V.T., Tam, C., Schneewind, O. (2000) LcrV, a substrate for Yersinia enterocolitica type III secretion, is required for toxin targeting into the cytosol of HeLa cells. J. Biol. Chem. 275, 3686936875.
  • [247]
    Fields, K.A., Straley, S.C. (1999) LcrV of Yersinia pestis enters infected eukaryotic cells by a virulence plasmid-independent mechanism. Infect. Immun. 67, 48014813.
  • [248]
    Fields, K.A., Nilles, M.L., Cowan, C., Straley, S.C. (1999) Virulence role of V antigen of Yersinia pestis at the bacterial surface. Infect. Immun. 67, 53955408.
  • [249]
    Pettersson, J., Holmstrom, A., Hill, J., Leary, S., Frithz-Lindsten, E., von Euler-Matell, A., Carlsson, E., Titball, R., Forsberg, A., Wolf-Watz, H. (1999) The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol. Microbiol. 32, 961976.
  • [250]
    Sing, A., Rost, D., Tvardovskaia, N., Roggenkamp, A., Wiedemann, A., Kirschning, C.J., Aepfelbacher, M., Heesemann, J. (2002) Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J. Exp. Med. 196, 10171024.
  • [251]
    Sing, A., Roggenkamp, A., Geiger, A.M., Heesemann, J. (2002) Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J. Immunol. 168, 13151321.
  • [252]
    Garmory, H.S., Griffin, K.F., Brown, K.A., Titball, R.W. (2003) Oral immunisation with live aroA attenuated Salmonella enterica serovar typhimurium expressing the Yersinia pestis V antigen protects mice against plague. Vaccine 21, 30513057.
  • [253]
    Broms, J.E., Sundin, C., Francis, M.S., Forsberg, A. (2003) Comparative analysis of type III effector translocation by Yersinia pseudotuberculosis expressing native LcrV or PcrV from Pseudomonas aeruginosa. J. Infect Dis. 188, 239249.
  • [254]
    Garmory, H.S., Freeman, D., Brown, K.A., Titball, R.W. (2004) Protection against plague afforded by immunisation with DNA vaccines optimised for expression of the Yersinia pestis V antigen. Vaccine 22, 947957.
  • [255]
    Goure, J., Pastor, A., Faudry, E., Chabert, J., Dessen, A., Attree, I. (2004) The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect. Immun. 72, 47414750.
  • [256]
    Garmory, H.S., Leary, S.E., Griffin, K.F., Williamson, E.D., Brown, K.A., Titball, R.W. (2003) The use of live attenuated bacteria as a delivery system for heterologous antigens. J. Drug Target 11, 471479.
  • [257]
    Griffin, K.F., Eyles, J.E., Spiers, I.D., Alpar, H.O., Williamson, E.D. (2002) Protection against plague following immunisation with microencapsulated V antigen is reduced by co-encapsulation with IFN-γ or IL-4, but not IL-6. Vaccine 20, 36503657.
  • [258]
    Williamson, E.D., Eley, S.M., Stagg, A.J., Green, M., Russell, P., Titball, R.W. (2000) A single dose sub-unit vaccine protects against pneumonic plague. Vaccine 19, 566571.
  • [259]
    Sawa, T., Yahr, T.L., Ohara, M., Kurahashi, K., Gropper, M.A., Wiener-Kronish, J.P., Frank, D.W. (1999) Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat. Med. 5, 392398.
  • [260]
    Roggenkamp, A., Leitritz, L., Sing, A., Kempf, V.A., Baus, K., Heesemann, J. (1999) Anti-recombinant V antigen serum promotes uptake of Yersinia enterocolitica serotype 08 by macrophages. Med. Microbiol. Immunol. (Berl) 188, 151159.
  • [261]
    Wang, S., Heilman, D., Liu, F., Giehl, T., Joshi, S., Huang, X., Chou, T.H., Goguen, J., Lu, S. (2004) A DNA vaccine producing LcrV antigen in oligomers is effective in protecting mice from lethal mucosal challenge of plague. Vaccine 22, 33483357.
  • [262]
    Shea, J.E., Hensel, M., Gleeson, C., Holden, D.W. (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93, 25932597.
  • [263]
    Parkhill, J., Wren, B.W., Thomson, N.R., Titball, R.W., Holden, M.T., Prentice, M.B., Sebaihia, M., James, K.D., Churcher, C., Mungall, K.L., Baker, S., Basham, D., Bentley, S.D., Brooks, K., Cerdeno-Tarraga, A.M., Chillingworth, T., Cronin, A., Davies, R.M., Davis, P., Dougan, G., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Karlyshev, A.V., Leather, S., Moule, S., Oyston, P.C., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S., Barrell, B.G. (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523527.
  • [264]
    Fernandez, D.H., Pittman-Cooley, L., Thune, R.L. (2001) Sequencing and analysis of the Edwardsiella ictaluri plasmids. Plasmid 45, 5256.
  • [265]
    Rao, P.S., Yamada, Y., Tan, Y.P., Leung, K.Y. (2004) Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol. Microbiol. 53, 573586.
  • [266]
    H. Hesse, R. Winston, C. Winston, The Glass Bead Game: (Magister Ludi), xix, Picador USA, New York, 2002, 558 p
  • [267]
    M.H. Saier Jr. (2004) Evolution of bacterial type III protein secretion systems. Trends Microbiol. 12, 113115.
  • [268]
    Faguy, D.M., Jarrell, K.F. (1999) A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes. Microbiology 145 (Pt 2), 279281.
  • [269]
    McCarter, L.L. (2004) Dual flagellar systems enable motility under different circumstances. J Mol. Microbiol. Biotechnol. 7, 1829.
  • [270]
    Samatey, F.A., Matsunami, H., Imada, K., Nagashima, S., Shaikh, T.R., Thomas, D.R., Chen, J.Z., Derosier, D.J., Kitao, A., Namba, K. (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431, 10621068.
  • [271]
    Clifton, D.R., Fields, K.A., Grieshaber, S.S., Dooley, C.A., Fischer, E.R., Mead, D.J., Carabeo, R.A., Hackstadt, T. (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc. Natl. Acad. Sci. USA 101, 1016610171.
  • [272]
    Subtil, A., Parsot, C., Dautry-Varsat, A. (2001) Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol. Microbiol. 39, 792800.
  • [273]
    Molestina, R.E., Klein, J.B., Miller, R.D., Pierce, W.H., Ramirez, J.A., Summersgill, J.T. (2002) Proteomic analysis of differentially expressed Chlamydia pneumoniae genes during persistent infection of HEp-2 cells. Infect. Immun. 70, 29762981.
  • [274]
    Shaw, A.C., Gevaert, K., Demol, H., Hoorelbeke, B., Vandekerckhove, J., Larsen, M.R., Roepstorff, P., Holm, A., Christiansen, G., Birkelund, S. (2002) Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2, 164186.
  • [275]
    Gould, S.J. Ontogeny and phylogeny, ix. 1977. Belknap Press of Harvard University Press, Cambridge, MA. p. 501.
  • [276]
    Chaudhuri, R.R., Khan, A.M., Pallen, M.J. (2004) coliBASE: an online database for Escherichia coli, Shigella and Salmonella comparative genomics. Nucleic Acids Res. 32, D296D299.
  • [277]
    Yu, H.B., Rao, P.S., Lee, H.C., Vilches, S., Merino, S., Tomas, J.M., Leung, K.Y. (2004) A type III secretion system is required for Aeromonas hydrophila AH-1 pathogenesis. Infect. Immun. 72, 12481256.
  • [278]
    Yuk, M.H., Harvill, E.T., Miller, J.F. (1998) The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol. Microbiol. 28, 945959.
  • [279]
    Gottfert, M., Rothlisberger, S., Kundig, C., Beck, C., Marty, R., Hennecke, H. (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol. 183, 14051412.
  • [280]
    Parsons, Y.N., Glendinning, K.J., Thornton, V., Hales, B.A., Hart, C.A., Winstanley, C. (2001) A putative type III secretion gene cluster is widely distributed in the Burkholderia cepacia complex but absent from genomovar I. FMR Microbiol. Lett. 203, 103108.
  • [281]
    Winstanley, C., Hales, B.A., Hart, C.A. (1999) Evidence for the presence in Burkholderia pseudomallei of a type III secretion system-associated gene cluster. J. Med. Microbiol. 48, 649656.
  • [282]
    Hsia, R.C., Pannekoek, Y., Ingerowski, E., Bavoil, P.M. (1997) Type III secretion genes identify a putative virulence locus of Chlamydia. Mol. Microbiol. 25, 351359.
  • [283]
    Kalman, S., Mitchell, W., Marathe, R., Lammel, C., Fan, J., Hyman, R.W., Olinger, L., Grimwood, J., Davis, R.W., Stephens, R.S. (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21, 385389.
  • [284]
    Deng, W., Li, Y., Vallance, B.A., Finlay, B.B. (2001) Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect. Immun. 69, 63236335.
  • [285]
    Ham, J.H., Bauer, D.W., Fouts, D.E., Collmer, A. (1998) A cloned Erwinia chrysanthemi Hrp (type III protein secretion) system functions in Escherichia coli to deliver Pseudomonas syringae Avr signals to plant cells and to secrete Avr proteins in culture. Proc. Natl. Acad. Sci. USA 95, 1020610211.
  • [286]
    Frederick, R.D., Ahmad, M., Majerczak, D.R., Arroyo-Rodriguez, A.S., Manulis, S., Coplin, D.L. (2001) Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Mol. Plant Microbe Interact. 14, 12131222.
  • [287]
    Brugirard-Ricaud, K., Givaudan, A., Parkhill, J., Boemare, N., Kunst, F., Zumbihl, R., Duchaud, E. (2004) Variation in the effectors of the type III secretion system among Photorhabdus species as revealed by genomic analysis. J. Bacteriol. 186, 43764381.
  • [288]
    Jiang, G., Krishnan, H.B. (2000) Sinorhizobium fredii USDA257, a cultivar-specific soybean symbiont, carries two copies of y4yA and y4yB, two open reading frames that are located in a region that encodes the type III protein secretion system. Mol. Plant Microbe Interact. 13, 10101014.
  • [289]
    Henke, J.M., Bassler, B.L. (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186, 37943805.
  • [290]
    Kim, J.G., Park, B.K., Yoo, C.H., Jeon, E., Oh, J., Hwang, I. (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J. Bacteriol. 185, 31553166.
  • [291]
    Zhu, W., MaGbanua, M.M., White, F.F. (2000) Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol. 182, 18441853.
  • [292]
    Bogdanove, A.J., Kim, J.F., Wei, Z., Kolchinsky, P., Charkowski, A.O., Conlin, A.K., Collmer, A., Beer, S.V. (1998) Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc. Natl. Acad. Sci. USA 95, 13251330.
  • [293]
    Gaudriault, S., Malandrin, L., Paulin, J.P., Barny, M.A. (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol. Microbiol. 26, 10571069.
  • [294]
    Creasey, E.A., Delahay, R.M., Bishop, A.A., Shaw, R.K., Kenny, B., Knutton, S., Frankel, G. (2003) CesT is a bivalent enteropathogenic Escherichia coli chaperone required for translocation of both Tir and Map. Mol. Microbiol. 47, 209221.
  • [295]
    Elliott, S.J., Hutcheson, S.W., Dubois, M.S., Mellies, J.L., Wainwright, L.A., Batchelor, M., Frankel, G., Knutton, S., Kaper, J.B. (1999) Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol. Microbiol. 33, 11761189.
  • [296]
    Abe, A., De Grado, M., Pfuetzner, R.A., Sanchez-Sanmartin, C., Devinney, R., Puente, J.L., Strynadka, N.C., Finlay, B.B. (1999) Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol. Microbiol. 33, 11621175.
  • [297]
    Elliott, S.J., O'Connell, C.B., Koutsouris, A., Brinkley, C., Donnenberg, M.S., Hecht, G., Kaper, J.B. (2002) A gene from the locus of enterocyte effacement that is required for enteropathogenic Escherichia coli to increase tight-junction permeability encodes a chaperone for EspF. Infect. Immun. 70, 22712277.
  • [298]
    Shan, L., Oh, H.S., Chen, J., Guo, M., Zhou, J., Alfano, J.R., Collmer, A., Jia, X., Tang, X. (2004) The HopPtoF locus of Pseudomonas syringae pv. tomato DC3000 encodes a type III chaperone and a cognate effector. Mol. Plant Microbe Interact. 17, 447455.
  • [299]
    Fu, Y., Galan, J.E. (1998) Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium. J. Bacteriol. 180, 33933399.
  • [300]
    Darwin, K.H., Robinson, L.S., Miller, V.L. (2001) SigE is a chaperone for the Salmonella enterica serovar typhimurium invasion protein SigD. J. Bacteriol. 183, 14521454.
  • [301]
    Bronstein, P.A., Miao, E.A., Miller, S.I. (2000) InvB is a type III secretion chaperone specific for SspA. J. Bacteriol. 182, 66386644.
  • [302]
    Ehrbar, K., Friebel, A., Miller, S.I., Hardt, W.D. (2003) Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. J. Bacteriol. 185, 69506967.
  • [303]
    Ehrbar, K., Hapfelmeier, S., Stecher, B., Hardt, W.D. (2004) InvB is required for type III-dependent secretion of SopA in Salmonella enterica serovar typhimurium. J. Bacteriol. 186, 12151219.
  • [304]
    Lee, S.H., Galan, J.E. (2003) InvB is a type III secretion-associated chaperone for the Salmonella enterica effector protein SopE. J. Bacteriol. 185, 72797284.
  • [305]
    Niebuhr, K., Jouihri, N., Allaoui, A., Gounon, P., Sansonetti, P.J., Parsot, C. (2000) IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38, 819.
  • [306]
    Page, A.L., Sansonetti, P., Parsot, C. (2002) Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol. Microbiol. 43, 15331542.
  • [307]
    Buttner, D., Gurlebeck, D., Noel, L.D., Bonas, U. (2004) HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type III-dependent protein secretion. Mol. Microbiol. 54, 755768.
  • [308]
    Trulzsch, K., Roggenkamp, A., Aepfelbacher, M., Wilharm, G., Ruckdeschel, K., Heesemann, J. (2003) Analysis of chaperone-dependent Yop secretion/translocation and effector function using a mini-virulence plasmid of Yersinia enterocolitica. Int. J. Med. Microbiol. 293, 167177.
  • [309]
    Day, J.B., Plano, G.V. (1998) A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol. Microbiol. 30, 777788.
  • [310]
    Woestyn, S., Sory, M.P., Boland, A., Lequenne, O., Cornelis, G.R. (1996) The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Mol. Microbiol. 20, 12611271.
  • [311]
    Iriarte, M., Cornelis, G.R. (1998) YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29, 915929.
  • [312]
    Burghout, P., Van Boxtel, R., Van Gelder, P., Ringler, P., Muller, S.A., Tommassen, J., Koster, M. (2004) Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J. Bacteriol. 186, 46454654.
  • [313]
    Creasey, E.A., Delahay, R.M., Daniell, S.J., Frankel, G. (2003) Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology 149, 20932106.
  • [314]
    Goodstadt, L., Ponting, C.P. (2001) CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17, 845846.