SEARCH

SEARCH BY CITATION

References

  • [1]
    Van Hoek, P., van Dijken, J.P., Pronk, J.T. (2000) Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzym. Microb. Technol. 26, 724736.
  • [2]
    Visser, W., Scheffers, W.A., Batenburg-van der Vegte, W.H., van Dijken, J.P. (1990) Oxygen requirements of yeasts. Appl. Environ. Microbiol. 56, 37853792.
  • [3]
    Lee, J. (1997) Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56, 124.
  • [4]
    Bruinenberg, P.M., de Bot, P.H.M., van Dijken, J.P., Scheffers, W.A. (1984) NADH-linked aldose reductase: the key to ethanolic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol. 19, 256260.
  • [5]
    Jeffries, T.W. (1983) Utilization of xylose by bacteria, yeasts, and fungi. Adv. Biochem. Eng. Biotechnol. 27, 132.
  • [6]
    Aristidou, A., Penttilä, M. (2000) Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11, 187198.
  • [7]
    Hahn-Hägerdal, B., Wahlbom, C.F., Gárdonyi, M., Van Zyl, W.H., Cordero Otero, R.R., Jonsson, L.J. (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv. Biochem. Eng. Biotechnol. 73, 5384.
  • [8]
    Ho, N.W., Chen, Z., Brainard, A.P., Sedlak, M. (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol. 65, 163192.
  • [9]
    Toivola, A., Yarrow, D., van den Bosch, E., van Dijken, J.P., Scheffers, W.A. (1984) Ethanolic fermentation of D-Xylose by yeasts. Appl. Environ. Microbiol. 47, 12211223.
  • [10]
    Bruinenberg, P.M., van Dijken, J.P., Scheffers, W.A. (1983) An enzymic analysis of NADPH production and consumption in Candida utilis. J. Gen. Microbiol. 129, 965971.
  • [11]
    Bruinenberg, P.M., Jonker, R., van Dijken, J.P., Scheffers, W.A. (1985) Utilization of formate as an additional energy source by glucose-limited cultures of Candida utilis CB S621 and Saccharomyces cerevisiae CBS 8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch. Microbiol. 142, 302306.
  • [12]
    Bruinenberg, P.M., de Bot, P.H.M., van Dijken, J.P., Scheffers, W.A. (1983) The role of the redox balance in the anaerobic fermentation of xylose by yeasts. Eur. J. Appl. Microbiol. Biotechnol. 18, 287292.
  • [13]
    Van Dijken, J.P., Scheffers, W.A. (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32, 199224.
  • [14]
    Albers, E., Larsson, C., Lidén, G., Niklasson, C., Gustafsson, L. (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl. Environ. Microbiol. 62, 31873195.
  • [15]
    Sonderegger, M., Sauer, U. (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 69, 19901998.
  • [16]
    Winkelhausen, E., Kuzmanova, S. (1998) Microbial conversion of D-xylose to xylitol. J. Ferment. Bioeng. 86, 114.
  • [17]
    Granström, T., Ojamo, H., Leisola, M. (2001) Chemostat study of xylitol production by Candida guilliermondii. Appl. Microbiol. Biotechnol. 55, 3642.
  • [18]
    Gárdonyi, M., Hahn-Hägerdal, B. (2003) The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzym. Microb. Technol. 32, 252259.
  • [19]
    Harhangi, H.R., Akhmanova, A.S., Emmens, R., van der Drift, C., de Laat, W.T., van Dijken, J.P., Jetten, M.S., Pronk, J.T., Op den Camp, H.J. (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch. Microbiol. 180, 134141.
  • [20]
    Kuyper, M., Harhangi, H.R., Stave, A.K., Winkler, A.A., Jetten, M.S., de Laat, W.T., den Ridder, J.J.J., Op den Camp, H.J., van Dijken, J.P., Pronk, J.T. (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae. FEMS Yeast Res. 4, 6978.
  • [21]
    Op den Camp, H.J., Harhangi, H. and van der Drift C. (2003). Fermentation of pentose sugars. Patent WO03/062430
  • [22]
    Van Dijken, J.P., Bauer, J., Brambilla, L., Duboc, P., François, J.M., Gancedo, C., Giuseppin, M.L., Heijnen, J.J., Hoare, M., Lange, H.C., Madden, E.A., Niederberger, P., Nielsen, J., Parrou, J.L., Petit, T., Porro, D., Reuss, M., van Riel, N., Rizzi, M., Steensma, H.Y., Verrips, C.T., Vindelov, J., Pronk, J.T. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzym. Microb. Technol. 26, 706714.
  • [23]
    Verduyn, C., Postma, E., Scheffers, W.A., van Dijken, J.P. (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501517.
  • [24]
    Andreasen, A.A., Stier, T.J. (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cell Physiol. 41, 2336.
  • [25]
    Andreasen, A.A., Stier, T.J. (1954) Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell Physiol. 43, 271281.
  • [26]
    Van Urk, H., Mak, P.R., Scheffers, W.A., van Dijken, J.P. (1988) Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4, 283291.
  • [27]
    Weusthuis, R.A., Luttik, M.A., Scheffers, W.A., van Dijken, J.P., Pronk, J.T. (1994) Is the Kluyver effect in yeasts caused by product inhibition. Microbiology 140, 17231729.
  • [28]
    Verduyn, C., Postma, E., Scheffers, W.A., van Dijken, J.P. (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136, 395403.
  • [29]
    Träff, K.L., Otero Cordero, R.R., Van Zyl, W.H., Hahn-Hägerdal, B. (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl. Environ. Microbiol. 67, 56685674.
  • [30]
    Verho, R., Londesborough, J., Penttilä, M., Richard, P. (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69, 58925897.
  • [31]
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., Picataggio, S. (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240243.
  • [32]
    Becker, J., Boles, E. (2003) A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Appl. Environ. Microbiol. 69, 41444150.
  • [33]
    Richard, P., Verho, R., Putkonen, M., Londesborough, J., Penttilä, M. (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res. 3, 185189.
  • [34]
    Porro, D., Bianchi, M.M., Brambilla, L., Menghini, R., Bolzani, D., Carrera, V., Lievense, J., Liu, C.L., Ranzi, B.M., Frontali, L., Alberghina, L. (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl. Environ. Microbiol. 65, 42114215.
  • [35]
    Biebl, H., Menzel, K., Zeng, A-P., Deckwer, W-D. (1999) Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52, 289297.
  • [36]
    Nakamura, C.E., Whited, G.M. (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454459.
  • [37]
    Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W., Preston, J.F. (1987) Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53, 24202425.
  • [38]
    Ingram, L.O., Aldrich, H.C., Borges, A.C., Causey, T.B., Martinez, A., Morales, F., Saleh, A., Underwood, S.A., Yomano, L.P., York, S.W., Zaldivar, J., Zhou, S. (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15, 855866.
  • [39]
    Sikyta, B. (1991). Directed Selection of Microorganisms in Continuous Culture, 134 pp. Rozpravy ceskoslovenské akademie ved, Praha
  • [40]
    Rodriguez-Peña, J.M., Cid, V.J., Arroyo, J., Nombela, C. (1998) The YGR194c(XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 162, 155160.