• [1]
    Maaheimo, H., Fiaux, J., Çakar, Z.P., Bailey, J.E., Sauer, U., Szyperski, T. (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur. J. Biochem. 268, 24642479.
  • [2]
    Bellaver, L.H., de Carvalho, N.M., Abrahao-Neto, J., Gombert, A.K. (2004) Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res. 4, 691698.
  • [3]
    Kellis, M., Birren, B.W., Lander, E.S. (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617624.
  • [4]
    Dietrich, F.S., et al. (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304307.
  • [5]
    Flores, C.L., Rodriguez, C., Petit, T., Gancedo, C. (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol. Rev. 24, 507529.
  • [6]
    Conway, T. (1992) The Entner–Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol. Rev. 9, 127.
  • [7]
    Sonderegger, M., Schümperli, M., Sauer, U. (2004) Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70, 28922897.
  • [8]
    Gancedo, J.M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334361.
  • [9]
    Rolland, F., Winderickx, J., Thevelein, J.M. (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2, 183201.
  • [10]
    Fredlund, E., Blank, L.M., Schnürer, J., Sauer, U., Passoth, V. (2004) Oxygen and glucose dependent regulation of central carbon metabolism in Pichia anomala. Appl. Environ. Microbiol. 70, 59055911.
  • [11]
    Fiaux, J., Çakar, Z.P., Sonderegger, M., Wüthrich, K., Szyperski, T., Sauer, U. (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukar. Cell 2, 170180.
  • [12]
    Sola, A., Maaheimo, H., Ylonen, K., Ferrer, P., Szyperski, T. (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur. J. Biochem. 271, 24622470.
  • [13]
    Møller, K., Christensen, B., Förster, J., Piškur, J., Nielsen, J., Olsson, L. (2002) Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes. Biotechnol. Bioeng. 77, 186193.
  • [14]
    Cannizzaro, C., Christensen, B., Nielsen, J., von Stockar, U. (2004) Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry. Metab. Eng. 6, 340351.
  • [15]
    Souciet, J., et al. (2000) Genomic exploration of the hemiascomycetous yeasts. 1. A set of yeast species for molecular evolution studies. FEBS Lett. 487, 312.
  • [16]
    Blank, L.M., Sauer, U. (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150, 10851093.
  • [17]
    Fischer, E., Sauer, U. (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem. 270, 880891.
  • [18]
    Sauer, U., Lasko, D.R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., Wüthrich, K., Bailey, J.E. (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181, 66796688.
  • [19]
    Szyperski, T. (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232, 433448.
    Direct Link:
  • [20]
    Duetz, W.A., Rüedi, L., Hermann, R., O'Connor, K., Büchs, J., Witholt, B. (2000) Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66, 26412646.
  • [21]
    Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P. (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501517.
  • [22]
    Wittmann, C., Hans, M., Bluemke, W. (2002) Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast 19, 13511363.
  • [23]
    Fischer, E., Zamboni, N., Sauer, U. (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem. 325, 308316.
  • [24]
    Gombert, A.K., Moreira dos Santos, M., Christensen, B., Nielsen, J. (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183, 14411451.
  • [25]
    Van Winden, W. (2002) Verifying assumed biosynthetic pathways, metabolic precursors and estimated measurement errors of amino acids, trehalose and levulinic acid using redundant 2D [13C, 1H] COSY NMR data. In Department of Bioprocess Technology, Delft University of Technology, Delft, pp. 229–245
  • [26]
    Schlosser, T., Gatgens, C., Weber, U., Stahmann, K.P. (2004) Alanine: glyoxylate aminotransferase of Saccharomyces cerevisiae-encoding gene AGX1 and metabolic significance. Yeast 21, 6373.
  • [27]
    Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O'Shea, E.K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686691.
  • [28]
    Pronk, J.T., Steensma, H.Y., van Dijken, J.P. (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 16071633.
  • [29]
    Christensen, B., Gombert, A.K., Nielsen, J. (2002) Analysis of flux estimates based on 13C-labelling experiments. Eur. J. Biochem. 269, 27952800.
  • [30]
    Oura, E. (1972) The effect of aeration on the growth energetics and biochemical composition of baker's yeast, with an appendix: reactions leading to the formation of yeast cell material from glucose and ethanol. Helsinki University, Helsinki.
  • [31]
    Sauer, U., Hatzimanikatis, V., Bailey, J.E., Hochuli, M., Szyperski, T., Wüthrich, K. (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nature Biotechnol. 15, 448452.
  • [32]
    Jiao, Z., Baba, T., Mori, H., Shimizu, K. (2003) Analysis of metabolic and physiological responses to gnd knockout in Escherichia coli by using C-13 tracer experiment and enzyme activity measurement. FEMS Microbiol. Lett. 220, 295301.
  • [33]
    Goffeau, A., et al. (1996) Life with 6000 genes. Science 274 (546), 563567.
  • [34]
    Kellis, M., Patterson, N., Endrizzi, M., Birren, B., Lander, E.S. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241254.
  • [35]
    Dos Santos, M.M., Gombert, A.K., Christensen, B., Olsson, L., Nielsen, J. (2003) Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using (13)C-labeled substrates. Eukar. Cell 2, 599608.
  • [36]
    de Jong-Gubbels, P., Bauer, J., Niederberger, P., Stuckrath, I., Kötter, P., van Dijken, J.P., Pronk, J.T. (1998) Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat cultures. Antonie van Leeuwenhoek 74, 253263.
  • [37]
    Morin, P.J., Subramanian, G.S., Gilmore, T.D. (1992) AAT1, a gene encoding a mitochondrial aspartate aminotransferase in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1171, 211214.
  • [38]
    Daran-Lapujade, P., Jansen, M.L., Daran, J.M., van Gulik, W., de Winde, J.H., Pronk, J.T. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J. Biol. Chem. 279, 91259138.
  • [39]
    Kalapos, M.P. (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol. Lett. 110, 145175.
  • [40]
    Evans, C.T., Ratledge, C. (1984) Induction of xylulose-5-phosphate in a variety of yeasts grown on d-xylose: the key to efficient xylose metabolism. Arch. Microbiol. 139, 4852.
  • [41]
    Zamboni, N., Fischer, E., Laudert, D., Aymerich, S., Hohmann, H.P., Sauer, U. (2004) The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J. Bacteriol. 186, 45284534.
  • [42]
    Veiga, A., Arrabaça, J.D., Loureiro-Dias, M.C. (2000) Cyanide-resistant respiration is frequent, but confined to yeasts incapable of aerobic fermentation. FEMS Microbiol. Lett. 190, 9397.
  • [43]
    Christensen, B., Christiansen, T., Gombert, A.K., Thykaer, J., Nielsen, J. (2001) Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden–Meyerhof–Parnas pathway in microorganisms. Biotechnol. Bioeng. 74, 517523.
  • [44]
    Sauer, U. (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol. 15, 5863.
  • [45]
    Sauer, U., Canonaco, F., Heri, S., Perrenoud, A., Fischer, E. (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279, 66136619.
  • [46]
    Boles, E., Lehnert, W., Zimmermann, F.K. (1993) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur. J. Biochem. 217, 469477.
  • [47]
    Gamo, F.J., Portillo, F., Gancedo, C. (1993) Characterization of mutations that overcome the toxic effect of glucose on phosphoglucose isomerase-less strains of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 106, 233237.
  • [48]
    Gonzalez Siso, M.I., Freire Picos, M.A., Cerdan, M.E. (1996) Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. FEBS Lett. 387, 710.
  • [49]
    Overkamp, K.M., Bakker, B.M., Steensma, H.Y., van Dijken, J.P., Pronk, J.T. (2002) Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Yeast 19, 813824.
  • [50]
    Grabowska, D., Chelstowska, A. (2003) The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J. Biol. Chem. 278, 1398413988.
  • [51]
    Dujon, B., et al. (2004) Genome evolution in yeasts. Nature 430, 3544.
  • [52]
    Middelhoven, W.J., Kurtzman, C.P. (2003) Relation between phylogeny and physiology in some ascomycetous yeasts. Antonie van Leeuwenhoek 83, 6974.