• [1]
    Van Hoek, P., Van Dijken, J.P., Pronk, J.T. (2000) Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzym. Microb. Technol. 26, 724736.
  • [2]
    Visser, W., Scheffers, W.A., Batenburg-van der Vegte, W.H., Van Dijken, J.P. (1990) Oxygen requirements of yeasts. Appl. Environ. Microbiol. 56, 37853792.
  • [3]
    Clark, T.A., Mackie, K.L. (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J. Chem. Tech. Biotechnol. 34, 101110.
  • [4]
    Du Preez, J.C. (1994) Process parameters and environmental-factors affecting d-xylose fermentation by yeasts. Enzym. Microb. Technol. 16, 944956.
  • [5]
    McMillan, J.D. (1994) Conversion of hemicellulose hydrolyzates to ethanol. ACS Symp. Ser. 566, 411437.
  • [6]
    Dien, B.S., Cotta, M.A., Jeffries, T.W. (2003) Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258266.
  • [7]
    Bruinenberg, P.M., De Bot, P.H.M., Van Dijken, J.P., Scheffers, W.A. (1983) The role of the redox balance in the anaerobic fermentation of xylose by yeasts. Eur. J. Appl. Microbiol. Biotechnol. 18, 287292.
  • [8]
    Gárdonyi, M., Hahn-Hägerdal, B. (2003) The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzym. Microb. Technol. 32, 252259.
  • [9]
    Sarthy, A.V., McConaughy, B.L., Lobo, Z., Sundstrom, J.A., Furlong, C.E., Hall, B.D. (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53, 19962000.
  • [10]
    Moes, C.J., Pretorius, I.S., Van Zyl, W.H. (1996) Cloning and expression of the Clostridium thermosulfurogenes d-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 18, 269274.
  • [11]
    Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bulow, L., Hahn-Hägerdal, B. (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62, 46484651.
  • [12]
    Ho, N.W.Y., Stevis, P., Rosenfeld, S., Huang, J.J., Tsao, G.T. (1984) Expression of the E. coli xylose isomerase gene by a yeast promoter. Biotechnol. Bioeng. Symp. 13, 245250.
  • [13]
    Blow, D.M., Hartley, B.S., and Henrick, K., (1990) Xylose isomerase mutants. Patent WO 9000196
  • [14]
    Fukazawa, C., (1989) Cloning of gene encoding glucose isomerase from Streptomyces and its expression. Patent JP 01137979
  • [15]
    Harhangi, H.R., Akhmanova, A.S., Emmens, R., Van der Drift, C., De Laat, W.T., Van Dijken, J.P., Jetten, M.S., Pronk, J.T., Op den Camp, H.J. (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch. Microbiol. 180, 134141.
  • [16]
    Kuyper, M., Harhangi, H.R., Stave, A.K., Winkler, A.A., Jetten, M.S., De Laat, W.T., De Ridder, J.J., Op den Camp, H.J., Van Dijken, J.P., Pronk, J.T. (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae. FEMS Yeast Res. 4, 6978.
  • [17]
    Kuyper, M., Winkler, A.A., Van Dijken, J.P., Pronk, J.T. (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 4, 655664.
  • [18]
    Van Dijken, J.P., Bauer, J., Brambilla, L., Duboc, P., François, J.M., Gancedo, C., Giuseppin, M.L., Heijnen, J.J., Hoare, M., Lange, H.C., Madden, E.A., Niederberger, P., Nielsen, J., Parrou, J.L., Petit, T., Porro, D., Reuss, M., van Riel, N., Rizzi, M., Steensma, H.Y., Verrips, C.T., Vindelov, J., Pronk, J.T. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzym. Microb. Technol. 26, 706714.
  • [19]
    Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P. (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501517.
  • [20]
    Gietz, R.D., Woods, R.A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Meth. Enzymol. 350, 8796.
  • [21]
    Inoue, H., Nojima, H., Okayama, H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96, 2328.
  • [22]
    Sambrook, K., Fritsch, E.F., Maniatis, I. (1989) Molecular Cloning: A Laboratory Manual, second ed. Cold Spring Harbour, New York.
  • [23]
    Güldener, U., Heck, S., Fiedler, T., Beinhauer, J., Hegemann, J.H. (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucl. Acids Res. 24, 25192524.
  • [24]
    Mumberg, D., Muller, R., Funk, M. (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119122.
  • [25]
    Goldstein, A.L., McCusker, J.H. (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 15411553.
  • [26]
    Andreasen, A.A., Stier, T.J. (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cell Physiol. 41, 2336.
  • [27]
    Andreasen, A.A., Stier, T.J. (1954) Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell Physiol. 43, 271281.
  • [28]
    Van Urk, H., Mak, P.R., Scheffers, W.A., Van Dijken, J.P. (1988) Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4, 283291.
  • [29]
    Weusthuis, R.A., Visser, W., Pronk, J.T., Scheffers, W.A., Van Dijken, J.P. (1994) Effects of oxygen limitation on sugar metabolism in yeasts – a continuous-culture study of the Kluyver effect. Microbiology-Uk 140, 703715.
  • [30]
    Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P. (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136, 395403.
  • [31]
    Piper, M.D., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J., Pronk, J.T. (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 277, 3700137008.
  • [32]
    Träff, K.L., Otero Cordero, R.R., Van Zyl, W.H., Hahn-Hägerdal, B. (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl. Environ. Microbiol. 67, 56685674.
  • [33]
    Hahn-Hägerdal, B., Linden, T., Senac, T., Skoog, K. (1991) Ethanolic fermentation of pentoses in lignocellulose hydrolyzates. Appl. Biochem. Biotechnol. 28-29, 131144.
  • [34]
    Kotter, P., Ciriacy, M. (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38, 776783.
  • [35]
    Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B., Boles, E. (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148, 27832788.
  • [36]
    Sedlak, M., Ho, N.W.Y. (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21, 671684.
  • [37]
    Jeffries, T.W., Jin, Y.S. (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63, 495509.
  • [38]
    Van Dijken, J.P., Van Tuijl, A., Luttik, M.A., Middelhoven, W.J., Pronk, J.T. (2002) Novel pathway for alcoholic fermentation of delta-gluconolactone in the yeast Saccharomyces bulderi. J. Bacteriol. 184, 672678.
  • [39]
    Bruinenberg, P.M., Van Dijken, J.P., Scheffers, W.A. (1983) A theoretical-analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 129, 953964.
  • [40]
    van Gulik, W.M., Heijnen, J.J. (1995) A metabolic network stoichiometry analysis of microbial-growth and product formation. Biotechnol. Bioeng. 48, 681698.
  • [41]
    Johansson, B., Hahn-Hägerdal, B. (2002) The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2, 277282.
  • [42]
    Wenzel, T.J., Teunissen, A.W., Steensma, H.Y. (1995) PDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucl. Acids Res. 23, 883884.
  • [43]
    Ng, R., Abelson, J. (1980) Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77, 39123916.
  • [44]
    Zaldivar, J., Borges, A., Johansson, B., Smits, H.P., Villas-Boas, S.G., Nielsen, J., Olsson, L. (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 59, 436442.
  • [45]
    Jeppsson, M., Johansson, B., Hahn-Hägerdal, B., Gorwa-Grauslund, M.F. (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 68, 16041609.
  • [46]
    Eliasson, A., Christensson, C., Wahlbom, C.F., Hahn-Hägerdal, B. (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66, 33813386.
  • [47]
    Sonderegger, M., Jeppsson, M., Hahn-Hägerdal, B., Sauer, U. (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl. Environ. Microbiol. 70, 23072317.
  • [48]
    Sedlak, M., Ho, N.W.Y. (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113-16, 403416.
  • [49]
    Toivari, M.H., Aristidou, A., Ruohonen, L., Penttilä, M. (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 3, 236249.