SEARCH

SEARCH BY CITATION

References

  • [1]
    Elbein, A.D., Pan, Y.T., Pastuszak, I., Carroll, D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13, 1727.
  • [2]
    Lillie, S.H., Pringle, J.R. (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J. Bacteriol. 143, 13841394.
  • [3]
    Hottiger, T., Schmutz, P., Wiemken, A. (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169, 55185522.
  • [4]
    Parrou, J.L., Teste, M.A., François, J. (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143, 18911900.
  • [5]
    Parrou, J.L., Enjalbert, B., Plourde, L., Bauche, A., Gonzalez, B., François, J. (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15, 191203.
  • [6]
    Silljé, H.H.W., Paalman, J.W.G., ter Schure, E.G., Olsthoorn, S.Q.B., Verkleij, A.J., Boonstra, J., Verrips, C.T. (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J. Bacteriol. 181, 396400.
  • [7]
    Kandror, O., Bretschneider, N., Kreydin, E., Cavalieri, D., Goldberg, A.L. (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol. Cell 13, 771781.
  • [8]
    François, J., Parrou, J.L. (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 125145.
  • [9]
    Jorge, J.A., Polizeli, M.L., Thevelein, J.M., Terenzi, H.F. (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol. Lett. 154, 165171.
  • [10]
    Singer, M.A., Lindquist, S. (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639648.
  • [11]
    Simola, M., Hänninen, A.-L., Stranius, S.M., Makarow, M. (2000) Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress. Mol. Microbiol. 37, 453.
  • [12]
    Crowe, J.H., Hoekstra, F.A., Crowe, L.M. (1982) Anhydrobiosis. Annu. Rev. Physiol. 54, 57599.
  • [13]
    Foster, A.J., Jenkinson, J.M., Talbot, N.J. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea EMBO J. (2003) 22–235.
  • [14]
    Thevelein, J.M. (1984) Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48, 42659.
  • [15]
    Nwaka, S., Holzer, H. Molecular biology of trehalose and trehalases in the yeast Saccharomyces cerevisae. Moldave, K., Ed. Progress in nucleic acid research. vol. 58 (1998) Academic Press 199–237.
  • [16]
    Ruf, J., Wacker, H., James, P., Maffia, M., Seiler, P., Galand, G., Van Kiekebusch, A., Semenza, G., Mantei, N. (1990) Rabbit small intestine trehalase. Purification, cDNA cloning, expression and verification of GPI-anchoring. J. Biol. Chem. 265, 15,03415,040.
  • [17]
    Schick, I., Haltrich, D., Kulbe, K.D. (1995) Trehalose phosphorylase from Pichia fermentans and its role in the metabolism of trehalose. Appl. Microbiol. Biotechnol. 43, 10881095.
  • [18]
    Eis, C., Albert, M., Dax, K., Nidetzky, B. (1998) The stereochemical course of the reaction mechanism of trehalose phosphorylase from Schizopyllum commune. FEBS Lett. 440, 440443.
  • [19]
    Eis, C., Nidetzky, B. (1999) Characterization of trehalose phosphorylase from Schizophyllum commune. Biochem. J. 341, 385393.
  • [20]
    Kitamoto, Y., Akashi, H., Tanaka, H., Mori, N. (1988) Alpha-glucose-1-phosphate formation by a novel trehalose phosphorylase from Flammulina velutipes. FEMS Microbiol. Lett. 55, 147150.
  • [21]
    Wannet, W.J.B., Op Den Camp, H.J.M., Wisselink, H.W., van der Drift, C., Van Griensven, L.J.L.D., Vogels, G.D. (1998) Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochem. Biophys. Acta 1425, 177178.
  • [22]
    Saito, K., Yamazaki, H., Ohnishi, Y., Fushimoto, S., Takahashi, E., Horninouchi, S. (1998) Production of trehalose synthase from a basidiomycete, Grifola frondosa, in Escherichia coli. Appl. Microbiol. Biotechnol. 50, 193198.
  • [23]
    D'Enfert, C., Bonini, B.M., Zapella, P.D., Fontaine, T., da Silva, A.M., Terenzi, H.F. (1999) Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol. Microbiol. 32, 471483.
  • [24]
    Kopp, M., Müller, H., Holzer, H. (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J. Biol. Chem. 268, 47664774.
  • [25]
    Soto, T., Fernandez, J., Dominguez, A., Vicente-Soler, J., Cansado, J., Gacto, M. (1998) Analysis of the ntp1+ gene, encoding neutral trehalase in the fission yeast Schizosaccharomyces pombe. Biochem. Biophys. Acta 1443, 225229.
  • [26]
    Amaral, F.C., Van Dijck, P., Nicoli, J.R., Thevelein, J.M. (1997) Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch. Microbiol. 167, 202208.
  • [27]
    Eck, R., Bergmann, C., Ziegelbauer, K., Schönfeld, W., Kunkel, W. (1997) A neutral trehalase gene from Candida albicans: molecular cloning, characterization and disruption. Microbiology 143, 37473756.
  • [28]
    Coutinho, P.M., Deleury, E., Davies, G.J., Henrissat, B. (2003) An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307317.
  • [29]
    Nwaka, S., Kopp, M., Holzer, H. (1995) Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J. Biol. Chem. 270, 1019310198.
  • [30]
    Franco, A., Soto, T., Vicente-Soler, J., Paredes, V., Madrid, M., Gacto, M., Cansado, J. (2003) A role for calcium in the regulation of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe. Biochem. J. 376, 209217.
  • [31]
    Destruelle, M., Holzer, H., Klionsky, D.J. (1995) Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activity. Yeast 11, 10151025.
  • [32]
    Pedreno, Y., Maicas, S., Argüelles, J-C., Sentandreu, R., Valentin-Gomez, E. (2004) The ACT1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans. J. Biol. Chem. 279, 4085240860.
  • [33]
    D'Enfert, C., Fontaine, T. (1997) Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol. Microbiol. 24, 203216.
  • [34]
    Inoue, H., Shimoda, C. (1981) Changes in trehalose content and trehalase activity during spore germination in fission yeast Schizosaccharomyces pombe. Arch. Microbiol. 129, 1922.
  • [35]
    De Virgilio, C., Muller, J., Boller, T., Wiemken, A. (1991) A constitutive, heat shock-activated neutral trehalase occurs in Schizosaccharomyces pombe in addition to the sporulation-specific acid trehalase. FEMS Microbiol. Lett. 68, 8590.
  • [36]
    Londesborough, J., Varimo, K. (1984) Characterization of two trehalases in baker's yeast. Biochem. J. 219, 511518.
  • [37]
    Mittenbühler, K., Holzer, H. (1988) Purification and characterization of acid trehalase from the yeast suc2 mutant. J. Biol. Chem. 263, 85378543.
  • [38]
    de Almeida, F.M., Lucio, A.K., Polizeli, M.L., Jorge, J.A., Terenzi, H.F. (1997) Function and regulation of the acid and neutral trehalases of Mucor rouxii. FEMS Microbiol. Lett. 155, 7377.
  • [39]
    Lucio, A.K., Polizeli, M.L., Jorge, J.A., Terenzi, H.F. (2000) Stimulation of hyphal growth in anaerobic cultures of Mucor rouxii by extracellular trehalose. Relevance of cell wall-bound activity of acid trehalase for trehalose utilization. FEMS Microbiol. Lett. 182, 913.
  • [40]
    Bonini, B.M., Neves, M.J., Jorge, J.A., Terenzi, H.F. (1995) Effects of temperature shifts on the metabolism of trehalose in Neurospora crassa wild type and a trehalase-deficient (tre) mutant Evidence against the participation of periplasmic trehalase in the catabolism of intracellular trehalose. Biochem. Biophys. Acta 1245, 339347.
  • [41]
    Nwaka, S., Mechler, B., Holzer, H. (1996) Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett. 386, 235238.
  • [42]
    Harris, S.D., Cotter, D.A. (1987) Vacuolar (lysosomal) trehalase of Saccharomyces cerevisiae. Curr. Microbiol. 15, 247249.
  • [43]
    Harris, S.D., Cotter, D.A. (1988) Transport of yeast vacuolar trehalase to the vacuole. Can. J. Microbiol. 34, 835838.
  • [44]
    Keller, F., Schellenberg, M., Wiemken, A. (1982) Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch. Microbiol. 131, 298301.
  • [45]
    Alizadeh, P., Klionsky, D.J. (1996) Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae. FEBS Lett. 391, 273278.
  • [46]
    Destruelle, M., Holzer, H., Klionsky, D.J. (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol. Cell. Biol. 14, 27402754.
  • [47]
    Jules, M., Guillou, V., François, J., Parrou, J.L. (2004) Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70, 27712778.
  • [48]
    Belela, P., Gascon, P. (1972) Localization of invertase in the yeast vacuoles. FEBS Lett. 13, 297301.
  • [49]
    Boos, W., Ehmann, U., Bremer, E., Middendorf, A., Postma, P. (1987) Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J. Biol. Chem. 262, 1321213218.
  • [50]
    Horlacher, R., Uhland, K., Klein, W., Erhmann, M., Boos, W. (1996) Characterization of a cytoplasmic trehalase of Escherichia coli. J. Bacteriol. 178, 625627.
  • [51]
    Malluta, E.F., Decker, P., Stambuk, B.U. (2000) The Kluyver effect for trehalose in Saccharomyces cerevisiae. J. Basic Microbiol. 40, 199205.
  • [52]
    Jiang, H., Medintz, I., Zhang, B., Michels, C.A. (2000) Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces. J. Bacteriol. 182, 647654.
  • [53]
    Rolim, M.F., de Araujo, P.S., Panek, A.D., Paschoalin, V.M., Silva, J.T. (2003) Shared control of maltose and trehalose utilization in Candida utilis. Braz. J. Med. Biol. Res. 36, 829837.
  • [54]
    Goffrini, P., Ferrero, I., Donnini, C. (2002) Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters. J. Bacteriol. 184, 427432.
  • [55]
    Beuse, M., Bartling, R., Kopmann, A., Diekmann, H., Thoma, M. (1998) Effect of the dilution rate on the mode of oscillation in continuous cultures of Saccharomyces cerevisiae. J. Biotechnol. 61, 1531.
  • [56]
    Lloyd, D., Lemar, K.M., Salgado, E.J., Gould, T.M., Murray, D.B. (2003) Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosis and time; a hypothesis. FEMS Yeast Res. 3, 333339.
  • [57]
    Jules, M., François, J., and Parou, J.L. (2005) Autonomous oscillations in Saccharomyces cerevisiae during batch cultures on trehalose. FEBS Lett., Doi:10.111/j1742-4658.2005.04588.X (online)
  • [58]
    Kaiser, C.A., Gimeno, R.E., Shaywitz, D.A. Protein secretion, membrane biogenesis, and endocytosis. Pringle, J.R., Broach, J.R., Jones, E.W., Eds. The Molecular and Cellular Biology of the Yeast Saccharomyces. vol. 3 (1991) Cold Spring Harbor Laboratory.
  • [59]
    Mittenbühler, K., Holzer, H. (1991) Characterization of different forms of yeast trehalase in the secretory pathway. Arch. Microbiol. 155, 217220.
  • [60]
    Jules, M. (2004) Aspects moleculaires de l'assimilation du Trehalose chez Saccharomysces cerevisiae. PhD thesis Doctoral School of Toulouse, 195 pp
  • [61]
    Lohning, C., Rosenbaum, C., Ciriacy, M. (1993) Isolation of the TYE2 gene reveals its identity to SWI3 encoding a general transcription factor in Saccharomyces cerevisiae. Curr. Genet. 24, 193199.
  • [62]
    Cote, J., Peterson, C.L., Workman, J.L. (1998) Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc. Natl. Acad. Sci. 95, 47494752.
  • [63]
    Powers, J., Barlowe, C. (1998) Transport of axl2p depends on erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product. J. Cell. Biol. 142, 12091222.
  • [64]
    Elrod-Erickson, M.J., Kaiser, C.A. (1996) Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations. Mol. Biol. Cell. 7, 10431058.
  • [65]
    Antebi, A., Fink, G.R. (1992) The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol. Biol. Cell. 3, 633654.
  • [66]
    Poon, P.P., Cassel, D., Spang, A., Rotman, M., Pick, E., Singer, R.A., Johnston, G.C. (1999) Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J. 18, 555564.
  • [67]
    Shahinian, S., Bussey, H. (2000) beta-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol. Microbiol. 35, 477489.
  • [68]
    Biswas, N., Ghosh, A.K. (1998) Regulation of acid trehalase activity by association-dissociation in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1379, 245256.
  • [69]
    Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 42414257.
  • [70]
    Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., Young, R.A. (2001) Remodelling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323337.
  • [71]
    Lagorce, A., Hauser, N.C., Labourdette, D., Rodriguez, C., Martin-Yken, H., Arroyo, J., Hoheisel, J.D., François, J. (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 278, 2034520357.
  • [72]
    Diderich, J.A., Schuurmans, J.M., Van Gaalen, M.C., Kruckeberg, A.L., van Dam, K. (2001) Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 18, 15151524.
  • [73]
    Buziol, S., Becker, J., Baumeister, A., Jung, S., Mauch, K., Reuss, M., Boles, E. (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res. 2, 283291.
  • [74]
    Hecker, L.I., Sussman, A.S. (1973) Localization of trehalase in the ascospores of Neurospora: relation to ascospore dormancy and germination. J. Bacteriol. 115, 592599.
  • [75]
    Beltran, F.F., Castillo, R., Vicente-Soler, J., Cansado, J., Gacto, M. (2000) Role for trehalase during germination of spores in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol. Lett. 193, 117121.
  • [76]
    Guilloux, E., Arcila, M.A., Courtois, J.E., Mournikoff, V. (1971) Trehalose of Pseudomonas fluorescens. Biochimie 53, 853857.
  • [77]
    Wang, Z., Wilson, W.A., Roach, P.J. (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21, 57425752.
  • [78]
    Matsuura A, Tsukada, M, Wada, Y., Ohsumi, Y. (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192, 245250.
  • [79]
    Schultz, J., Milpetz, F., Bork, P., Ponting, C.P. (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl. Acad. Sci. 95, 58645874.
  • [80]
    Letunic, I., Copley, R.R., Schmidt, S., Ciccarelli, F.D., Doerks, T., Schultz, J., Ponting, C.D., Bork, P. (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32 (database issue).
  • [81]
    Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L.L., Studholme, D.J., Yeats, S.C., Eddy, S.R. (2004) The Pfam protein families database. Nucleic Acids Res. 32 (database issue).