• 1
    Jungermann K, Katz N. Functional specialization of different hepatocyte populations. Physiol Rev 1989; 69:708764.
  • 2
    Cereghini S, Raymondjean M, Carranca AG, Herbomel P, Yaniv M. Factors involved in control of tissue-specific expression of albumin gene. Cell 1987; 50:627638.
  • 3
    Courtois G, Morgan JG, Campbell LA, Fourel G, Crabtree GR. Interaction of a liver specific nuclear factor with the fibrinogen and alpha 1-antitrypsin promoters. Science 1987; 238:688692.
  • 4
    Courtois G, Baumhueter S, Crabtree GR. Purified hepatocyte nuclear factor 1 interacts with a family of hepatocyte-specific promoters. Proc Natl Acad Sci U S A 1988; 85:79377941.
  • 5
    Costa RH, Grayson DR, Darnell JE, Jr. Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and α1-antitrypsin genes. Mol Cell Biol 1989; 9:14151425.
  • 6
    Costa RH, Grayson DR. Site-directed mutagenesis of hepatocyte nuclear factor (HNF) binding sites in the mouse transthyretin (TTR) promoter reveal synergistic interactions with its enhancer region. Nucleic Acids Res 1991; 19:41394145.
  • 7
    DiPersio CM, Jackson DA, Zaret KS. The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol Cell Biol 1991; 11:44054414.
  • 8
    Monaci P, Nicosia A, Cortese R. Two different liver-specific factors stimulate in vitro transcription from the human α1-antitrypsin promoter. EMBO J 1988; 7:20752087.
  • 9
    Pani L, Qian XB, Clevidence D, Costa RH. The restricted promoter activity of the liver transcription factor hepatocyte nuclear factor 3β involves a cell-specific factor and positive autoactivation. Mol Cell Biol 1992; 12:552562.
  • 10
    Samadani U, Costa RH. The transcriptional activator hepatocyte nuclear factor six regulates liver gene expression. Mol Cell Biol 1996; 16:62736284.
  • 11
    Vorachek WR, Steppan CM, Lima M, Black H, Bhattacharya R, Wen P, Kajiyama Y, et al. Distant enhancers stimulate the albumin promoter through complex proximal binding sites. J Biol Chem 2000; 275:2903129041.
  • 12
    Duncan SA, Navas MA, Dufort D, Rossant J, Stoffel M. Regulation of a transcription factor network required for differentiation and metabolism. Science 1998; 281:692695.
  • 13
    Duncan SA, Nagy A, Chan W. Murine gastrulation requires HNF-4 regulated gene expression in the visceral endoderm: tetraploid rescue of Hnf-4(−/−) embryos. Development 1997; 124:279287.
  • 14
    Hatzis P, Talianidis I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4alpha gene expression. Mol Cell Biol 2001; 21:73207330.
  • 15
    Kuo CJ, Conley PB, Chen L, Sladek FM, Darnell J Jr., Crabtree GR. A transcriptional hierarchy involved in mammalian cell-type specification. Nature 1992; 355:457461.
  • 16
    Li J, Ning G, Duncan SA. Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes Dev 2000; 14:464474.
  • 17
    Peterson RS, Clevidence DE, Ye H, Costa RH. Hepatocyte nuclear factor-3α promoter regulation involves recognition by cell-specific factors, thyroid transcription factor-1 and autoactivation. Cell Growth Differen 1997; 8:6982.
  • 18
    Rausa FM, Galarneau L, Bélanger L, Costa RH. The nuclear receptor fetoprotein transcription factor is coexpressed with its target gene HNF-3beta in the developing murine liver intestine and pancreas. Mech Dev 1999; 89:185188.
  • 19
    Rastegar M, Szpirer C, Rousseau GG, Lemaigre FP. Hepatocyte nuclear factor 6: organization and chromosomal assignment of the rat gene and characterization of its promoter. Biochem J 1998; 334:565569.
  • 20
    Samadani U, Porcella A, Pani L, Johnson PF, Burch J, Pine R, Costa RH. Cytokine regulation of the liver transcription factor HNF-3β is mediated by the C/EBP family and interferon regulatory factor 1. Cell Growth Differen 1995; 6:879890.
  • 21
    Zhong W, Mirkovitch J, Darnell JE Jr. Tissue-specific regulation of mouse hepatocyte nuclear factor 4 expression. Mol Cell Biol 1994; 14:72767284.
  • 22
    Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000; 14:142146.
  • 23
    Lai E, Prezioso VR, Tao WF, Chen WS, Darnell JE Jr. Hepatocyte nuclear factor 3α belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev 1991; 5:416427.
  • 24
    Clark KL, Halay ED, Lai E, Burley SK. Co-crystal structure of the HNF-3/fork head DNA recognition motif resembles histone H5. Nature 1993; 364:412420.
  • 25
    Marsden I, Jin C, Liao X. Structural changes in the region directly adjacent to the DNA binding helix highlight a possible mechanism to explain the observed changes in the sequence specific binding of winged helix proteins. J Mol Biol 1998; 278:293299.
  • 26
    Qian X, Costa RH. Analysis of HNF-3β protein domains required for transcriptional activation and nuclear targeting. Nucleic Acids Res 1995; 23:11841191.
  • 27
    Rausa F, Tan Y, Costa RH. Association between HNF-6 and FoxA2 DNA binding domains stimulates FoxA2 transcriptional activity but inhibits HNF-6 DNA binding. Mol Cell Biol 2003; 23:437449.
  • 28
    Overdier DG, Porcella A, Costa RH. The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol 1994; 14:27552766.
  • 29
    Mahlapuu M, Pelto-Huikko M, Aitola M, Enerback S, Carlsson P. FREAC-1 contains a cell-type-specific transcriptional activation domain and is expressed in epithelial-mesenchymal interfaces. Dev Biol 1998; 202:183195.
  • 30
    Peterson RS, Lim L, Ye H, Zhou H, Overdier DG, Costa RH. The winged helix transcriptional activator HFH-8 is expressed in the mesoderm of the primitive streak stage of mouse embryos and its cellular derivatives. Mech Dev 1997; 69:5369.
  • 31
    Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG, Roebuck KA, et al. Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol 1997; 17:16261641.
  • 32
    Jacquemin P, Lannoy VJ, Rousseau GG, Lemaigre FP. OC-2, a novel mammalian member of the ONECUT class of homeodomain transcription factors whose function in liver partially overlaps with that of hepatocyte nuclear factor-6. J Biol Chem 1999; 274:26652671.
  • 33
    Lemaigre FP, Durviaux SM, Truong O, Lannoy VJ, Hsuan JJ, Rousseau GG. Hepatocyte nuclear factor 6, a transcription factor that contains a novel type of homeodomain and a single cut domain. Proc Natl Acad Sci U S A 1996; 93:94609464.
  • 34
    Rausa F, Samadani U, Ye H, Lim L, Fletcher CF, Jenkins NA, Copeland NG, et al. The cut homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3β in the developing murine liver and pancreas. Dev Biol 1997; 192:228246.
  • 35
    Lannoy VJ, Rodolosse A, Pierreux CE, Rousseau GG, Lemaigre FP. Transcriptional stimulation by hepatocyte nuclear factor-6. Target-specific recruitment of either CREB-binding protein (CBP) or p300/CBP-associated factor (p/CAF). J Biol Chem 2000; 275:2209822103.
  • 36
    Vinson CR, Sigler PB, McKnight SL. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 1989; 246:911916.
  • 37
    Landschulz WH, Johnson PF, Adashi EY, Graves BJ, McKnight SL. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 1988; 2:786800.
  • 38
    Descombes P, Chojkier M, Lichtsteiner S, Falvey E, Schibler U. LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. Genes Dev 1990; 4:15411551.
  • 39
    Frain M, Swart G, Monaci P, Nicosia A, Stampfli S, Frank R, Cortese R. The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain. Cell 1989; 59:145157.
  • 40
    Baumhueter S, Mendel DB, Conley PB, Kuo CJ, Turk C, Graves MK, Edwards CA, et al. HNF-1 shares three sequence motifs with the POU domain proteins and is identical to LF-B1 and APF. Genes Dev 1990; 4:372379.
  • 41
    Sourdive DJ, Transy C, Garbay S, Yaniv M. The bifunctional DCOH protein binds to HNF1 independently of its 4-α-carbinolamine dehydratase activity. Nucleic Acids Res 1997; 25:14761484.
  • 42
    Ott MO, Rey-Campos J, Cereghini S, Yaniv M. vHNF1 is expressed in epithelial cells of distinct embryonic origin during development and precedes HNF1 expression. Mech Dev 1991; 36:4758.
  • 43
    Jiang G, Sladek FM. The DNA binding domain of hepatocyte nuclear factor 4 mediates cooperative, specific binding to DNA and heterodimerization with the retinoid X receptor α. J Biol Chem 1997; 272:12181225.
  • 44
    Wen P, Locker J. A novel hepatocytic transcription factor that binds the α-fetoprotein promoter-linked coupling element. Mol Cell Biol 1994; 14:66166626.
  • 45
    Apergis GA, Crawford N, Ghosh D, Steppan CM, Vorachek WR, Wen P, Locker J. A novel nk-2-related transcription factor associated with human fetal liver and hepatocellular carcinoma. J Biol Chem 1998; 273:29172925.
  • 46
    Galarneau L, Pare JF, Allard D, Hamel D, Levesque L, Tugwood JD, Green S, et al. The α1 fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Mol Cell Biol 1996; 16:38533865.
  • 47
    Kajiyama Y, Tian J, Locker J. Regulation of alpha-fetoprotein expression by Nkx2.8. Mol Cell Biol 2002; 22:61226130.
  • 48
    Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000; 14:25512569.
  • 49
    Naar AM, Lemon BD, Tjian R. Transcriptional coactivator complexes. Annu Rev Biochem 2001; 70:475501.
  • 50
    Klochendler-Yeivin A, Muchardt C, Yaniv M. SWI/SNF chromatin remodeling and cancer. Curr Opin Genet Dev 2002; 12:7379.
  • 51
    Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002; 108:475487.
  • 52
    Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001; 114:23632373.
  • 53
    Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001; 70:81120.
  • 54
    Chen H, Tini M, Evans RM. HATs on and beyond chromatin. Curr Opin Cell Biol 2001; 13:218224.
  • 55
    Qi C, Zhu Y, Reddy JK. Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 2000; 32:187204.
  • 56
    Pani L, Overdier DG, Porcella A, Qian X, Lai E, Costa RH. Hepatocyte nuclear factor 3β contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila fork head protein. Mol Cell Biol 1992; 12:37233732.
  • 57
    Costa RH, Kalinichenko VV, Lim L. Transcription factors in mouse lung development and function. Am J Physiol Lung Cell Mol Physiol 2001; 280:L823L838.
  • 58
    McPherson CE, Shim EY, Friedman DS, Zaret KS. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell 1993; 75:387398.
  • 59
    Shim EY, Woodcock C, Zaret KS. Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev 1998; 12:510.
  • 60
    Cirillo LA, McPherson CE, Bossard P, Stevens K, Cherian S, Shim EY, Clark KL, et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J 1998; 17:244254.
  • 61
    Cirillo LA, Zaret KS. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell 1999; 4:961969.
  • 62
    Lahuna O, Fernandez L, Karlsson H, Maiter D, Lemaigre FP, Rousseau GG, Gustafsson J, et al. Expression of hepatocyte nuclear factor 6 in rat liver is sex-dependent and regulated by growth hormone. Proc Natl Acad Sci U S A 1997; 94:1230912313.
  • 63
    Lahuna O, Rastegar M, Maiter D, Thissen JP, Lemaigre FP, Rousseau GG. Involvement of STAT5 (signal transducer and activator of transcription 5) and HNF-4 (hepatocyte nuclear factor 4) in the transcriptional control of the hnf6 gene by growth hormone. Mol Endocrinol 2000; 14:285294.
  • 64
    Rastegar M, Rousseau GG, Lemaigre FP. CCAAT/enhancer-binding protein-alpha is a component of the growth hormone-regulated network of liver transcription factors. Endocrinology 2000; 141:16861692.
  • 65
    Yoshida E, Aratani S, Itou H, Miyagishi M, Takiguchi M, Osumu T, Murakami K, et al. Functional association between CBP and HNF4 in trans-activation. Biochem Biophys Res Commun 1997; 241:664669.
  • 66
    Dell H, Hadzopoulou-Cladaras M. CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression. J Biol Chem 1999; 274:90139021.
  • 67
    Soutoglou E, Papafotiou G, Katrakili N, Talianidis I. Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins. J Biol Chem 2000; 275:1251512520.
  • 68
    Soutoglou E, Viollet B, Vaxillaire M, Yaniv M, Pontoglio M, Talianidis I. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J 2001; 20:19841992.
  • 69
    Mink S, Haenig B, Klempnauer KH. Interaction and functional collaboration of p300 and C/EBPbeta. Mol Cell Biol 1997; 17:66096617.
  • 70
    Soutoglou E, Katrakili N, Talianidis I. Acetylation regulates transcription factor activity at multiple levels. Mol Cell 2000; 5:745751.
  • 71
    Hertz R, Magenheim J, Berman I, Bar-Tana J. Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4α. Nature 1998; 392:512516.
  • 72
    Jiang G, Nepomuceno L, Yang Q, Sladek FM. Serine/threonine phosphorylation of orphan receptor hepatocyte nuclear factor 4. Arch Biochem Biophys 1997; 340:19.
  • 73
    Ktistaki E, Ktistakis NT, Papadogeorgaki E, Talianidis I. Recruitment of hepatocyte nuclear factor 4 into specific intranuclear compartments depends on tyrosine phosphorylation that affects its DNA-binding and transactivation potential. Proc Natl Acad Sci U S A 1995; 92:98769880.
  • 74
    Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A 2003; 100:40124017.
  • 75
    Pontoglio M, Faust DM, Doyen A, Yaniv M, Weiss MC. Hepatocyte nuclear factor 1α gene inactivation impairs chromatin remodeling and demethylation of the phenylalanine hydroxylase gene. Mol Cell Biol 1997; 17:49484956.
  • 76
    Duncan SA. Mechanisms controlling early development of the liver. Mech Dev 2003; 120:1933.
  • 77
    Zaret KS. Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet 2002; 3:499512.
  • 78
    Lemaigre FP. Development of the biliary tract. Mech Dev 2003; 120:8187.
  • 79
    Shiojiri N. Development and differentiation of bile ducts in the mammalian liver. Microsc Res Tech 1997; 39:328335.
  • 80
    Erlinger S. Review article: new insights into the mechanisms of hepatic transport and bile secretion. J Gastroenterol Hepatol 1996; 11:575579.
  • 81
    Keng VW, Yagi H, Ikawa M, Nagano T, Myint Z, Yamada K, Tanaka T, et al. Homeobox gene hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem Biophys Res Commun 2000; 276:11551161.
  • 82
    Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington RS. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 2000; 127:24332445.
  • 83
    Hentsch B, Lyons I, Li R, Hartley L, Lints TJ, Adams JM, Harvey RP. Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev 1996; 10:7079.
  • 84
    Eferl R, Sibilia M, Hilberg F, Fuchsbichler A, Kufferath I, Guertl B, Zenz R, et al. Functions of c-Jun in liver and heart development. J Cell Biol 1999; 145:10491061.
  • 85
    Hilberg F, Aguzzi A, Howells N, Wagner EF. c-jun is essential for normal mouse development and hepatogenesis. Nature 1993; 365:179181.
  • 86
    Li X, Stark GR. NFkappaB-dependent signaling pathways. Exp Hematol 2002; 30:285296.
  • 87
    Lentsch AB, Ward PA. Activation and regulation of NFkappaB during acute inflammation. Clin Chem Lab Med 1999; 37:205208.
  • 88
    Brenner DA. Signal transduction during liver regeneration. J Gastroenterol Hepatol 1998; 13(Suppl):S93S95.
  • 89
    Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995; 376:167170.
  • 90
    Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL, Goeddel DV. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 1999; 10:421429.
  • 91
    Rudolph D, Yeh WC, Wakeham A, Rudolph B, Nallainathan D, Potter J, Elia AJ, et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev 2000; 14:854862.
  • 92
    Rosenfeld ME, Prichard L, Shiojiri N, Fausto N. Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am J Pathol 2000; 156:9971007.
  • 93
    Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, et al. An essential role in liver development for transcription factor XBP-1. Genes Dev 2000; 14:152157.
  • 94
    Motoyama J, Kitajima K, Kojima M, Kondo S, Takeuchi T. Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice. Mech Dev 1997; 66:2737.
  • 95
    Landry C, Clotman F, Hioki T, Oda H, Picard JJ, Lemaigre FP, Rousseau GG. HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors. Dev Biol 1997; 192:247257.
  • 96
    Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002; 129:18191828.
  • 97
    Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, Madsen OD, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol 2000; 20:44454454.
  • 98
    Coffinier C, Gresh L, Fiette L, Tronche F, Schutz G, Babinet C, Pontoglio M, et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development 2002; 129:18291838.
  • 99
    Kalinichenko VV, Lim L, Beer-Stoltz D, Shin B, Rausa FM, Clark J, Whitsett JA, et al. Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the forkhead box f1 transcription factor. Dev Biol 2001; 235:489506.
  • 100
    Kalinichenko VV, Zhou Y, Bhattacharyya D, Kim W, Shin B, Bambal K, Costa RH. Haploinsufficiency of the mouse forkhead box f1 gene causes defects in gall bladder development. J Biol Chem 2002; 277:1236912374.
  • 101
    Lim L, Kalinichenko VV, Whitsett JA, Costa RH. Fusion of right lung lobes and pulmonary vessels in mice heterozygous for the forkhead box f1 targeted allele. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1012L1022.
  • 102
    Mahlapuu M, Enerbäck S, Carlsson P. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development 2001; 128:23972406.
  • 103
    Kuo CF, Xanthopoulos KG, Darnell JE Jr. Fetal and adult localization of C/EBP: evidence for combinatorial action of transcription factors in cell-specific gene expression. Development 1990; 109:473481.
  • 104
    Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, et al. Impaired energy homeostasis in C/EBPα knockout mice. Science 1995; 269:11081112.
  • 105
    Flodby P, Barlow C, Kylefjord H, Ahrlund-Richter L, Xanthopoulos KG. Increased hepatic cell proliferation and lung abnormalities in mice deficient in CCAAT/enhancer binding protein α. J Biol Chem 1996; 271:2475324760.
  • 106
    Soriano HE, Kang DC, Finegold MJ, Hicks MJ, Wang ND, Harrison W, Darlington GJ. Lack of C/EBP α gene expression results in increased DNA synthesis and an increased frequency of immortalization of freshly isolated mice hepatocytes. Hepatology 1998; 27:392401.
  • 107
    Timchenko NA, Harris TE, Wilde M, Bilyeu TA, Burgess-Beusse BL, Finegold MJ, Darlington GJ. CCAAT/enhancer binding protein α regulates p21 protein and hepatocyte proliferation in newborn mice. Mol Cell Biol 1997; 17:73537361.
  • 108
    Harris TE, Albrecht JH, Nakanishi M, Darlington GJ. CCAAT/enhancer-binding protein alpha cooperates with p21 to inhibit cyclin-dependent kinase-2 activity and induces growth arrest independent of DNA binding. J Biol Chem 2001; 276:2920029209.
  • 109
    Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 1996; 84:575585.
  • 110
    Duncan SA, Manova K, Chen WS, Hoodless P, Weinstein DC, Bachvarova RF, Darnell JE Jr. Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst. Proc Natl Acad Sci U S A 1994; 91:75987602.
  • 111
    Sladek FM, Zhong WM, Lai E, Darnell JE Jr. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev 1990; 4:23532365.
  • 112
    Taraviras S, Monaghan AP, Schutz G, Kelsey G. Characterization of the mouse HNF-4 gene and its expression during mouse embryogenesis. Mech Dev 1994; 48:6779.
  • 113
    Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox CJ, Fajans SS, et al. Mutations in the hepatocyte nuclear factor 4α gene in maturity onset diabetes of the young (MODY1). Nature 1996; 384:458460.
  • 114
    Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, et al. Mutations in the hepatocyte nucelar factor-1α gene in maturity onset diabetes of the young (MODY3). Nature 1996; 384:455458.
  • 115
    Dukes ID, Sreenan S, Roe MW, Levisetti M, Zhou YP, Ostrega D, Bell GI, et al. Defective pancreatic β-cell glycolytic signaling in hepatocyte nuclear factor-1α-deficient mice. J Biol Chem 1998; 273:2445724464.
  • 116
    Lee YH, Sauer B, Gonzalez FJ. Laron dwarfism and non-insulin-dependent diabetes mellitus in the Hnf-1α knockout mouse. Mol Cell Biol 1998; 18:30593068.
  • 117
    Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A, Pick AJ, et al. Defective insulin secretion in hepatocyte nuclear factor 1α- deficient mice. J Clin Invest 1998; 101:22152222.
  • 118
    Chen WS, Manova K, Weinstein DC, Duncan SA, Plump AS, Prezioso VR, Bachvarova RF, et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 1994; 8:24662477.
  • 119
    Parviz F, Matullo C, Garrison WD, Savatski L, Adamson JW, Ning G, Kaestner KH, et al. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet 2003; 34:292296.
  • 120
    Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 2001; 21:13931403.
  • 121
    Ang SL, Rossant J. HNF-3β is essential for node and notochord formation in mouse development. Cell 1994; 78:561574.
  • 122
    Weinstein DC, Ruiz I, Altaba A, Chen WS, Hoodless P, Prezioso VR, Jessell TM, Darnell JE Jr. The winged-helix transcription factor HNF-3β is required for notochord development in the mouse embryo. Cell 1994; 78:575588.
  • 123
    Monaghan AP, Kaestner KH, Grau E, Schutz G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 α, β and γ genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 1993; 119:567578.
  • 124
    Kopachik W, Hayward SW, Cunha GR. Expression of hepatocyte nuclear factor-3α in rat prostate, seminal vesicle, and bladder. Dev Dyn 1998; 211:131140.
  • 125
    Kaestner KH, Hiemisch H, Luckow B, Schutz G. The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 1994; 20:377385.
  • 126
    Sund NJ, Ang SL, Sackett SD, Shen W, Daigle N, Magnuson MA, Kaestner KH. Hepatocyte nuclear factor 3beta (Foxa2) is dispensable for maintaining the differentiated state of the adult hepatocyte. Mol Cell Biol 2000; 20:51755183.
  • 127
    Kaestner KH, Katz J, Liu Y, Drucker DJ, Schutz G. Inactivation of the winged helix transcription factor HNF3α affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev 1999; 13:495504.
  • 128
    Shih DQ, Navas MA, Kuwajima S, Duncan SA, Stoffel M. Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3α-deficient mice. Proc Natl Acad Sci U S A 1999; 96:1015210157.
  • 129
    Kaestner KH, Hiemisch H, Schutz G. Targeted disruption of the gene encoding hepatocyte nuclear factor 3γ results in reduced transcription of hepatocyte-specific genes. Mol Cell Biol 1998; 18:42454251.
  • 130
    Shen W, Scearce LM, Brestelli JE, Sund NJ, Kaestner KH. Foxa3 (hepatocyte nuclear factor 3gamma) is required for the regulation of hepatic GLUT2 expression and the maintenance of glucose homeostasis during a prolonged fast. J Biol Chem 2001; 276:4281242817.
  • 131
    Rausa FM, Tan Y, Zhou H, Yoo K, Stolz DB, Watkins S, Franks RR, et al. Elevated levels of HNF-3β in mouse hepatocytes influence expression of genes involved in bile acid and glucose homeostasis. Mol Cell Biol 2000; 20:82648282.
  • 132
    Tan Y, Hughes DE, Wang X, Costa RH. Adenovirus-mediated hepatic increase in HNF-3β or HNF-3α shows differences in levels of liver glycogen and gene expression. Hepatology 2002; 35:3039.
  • 133
    Hughes DE, Beer Stolz D, Yu S, Tan Y, Reddy JK, Watkins SC, Diehl AM, et al. Elevated hepatocyte levels of the forkhead box A2 (HNF-3β) transcription factor cause postnatal steatosis and mitochondrial damage. Hepatology 2003; 37:14141424.
  • 134
    Tan Y, Adami G, Costa RH. Maintaining HNF-6 expression prevents AdHNF3β mediated decrease in hepatic levels of Glut2 and glycogen. Hepatology 2002; 35:790798.
  • 135
    Hindley A, Kolch W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J Cell Sci 2002; 115:15751581.
  • 136
    Pouyssegur J, Volmat V, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 2002; 64:755763.
  • 137
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411:355365.
  • 138
    Booher RN, Holman PS, Fattaey A. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem 1997; 272:2230022306.
  • 139
    Liu F, Stanton JJ, Wu Z, Piwnica-Worms H. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol Cell Biol 1997; 17:571583.
  • 140
    Liu F, Rothblum-Oviatt C, Ryan CE, Piwnica-Worms H. Overproduction of human Myt1 kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-cyclin B1 complexes. Mol Cell Biol 1999; 19:51135123.
  • 141
    Mueller PR, Coleman TR, Kumagai A, Dunphy WG. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 1995; 270:8690.
  • 142
    Borgne A, Meijer L. Sequential dephosphorylation of p34(cdc2) on Thr-14 and Tyr-15 at the prophase/metaphase transition. J Biol Chem 1996; 271:2784727854.
  • 143
    Nilsson I, Hoffmann I. Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 2000; 4:107114.
  • 144
    Wells NJ, Watanabe N, Tokusumi T, Jiang W, Verdecia MA, Hunter T. The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J Cell Sci 1999; 112:33613371.
  • 145
    Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 2000; 14:23932409.
  • 146
    Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M, Nevins JR. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 2001; 21:46844699.
  • 147
    Blangy A, Lane HA, d' Herin P, Harper M, Kress M, Nigg EA. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 1995; 83:11591169.
  • 148
    Kimura K, Hirano M, Kobayashi R, Hirano T. Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 1998; 282:487490.
  • 149
    Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001; 2:2132.
  • 150
    Ohi R, Gould KL. Regulating the onset of mitosis. Curr Opin Cell Biol 1999; 11:267273.
  • 151
    Ookata K, Hisanaga S, Okumura E, Kishimoto T. Association of p34cdc2/cyclin B complex with microtubules in starfish oocytes. J Cell Sci 1993; 105:873881.
  • 152
    Sutani T, Yuasa T, Tomonaga T, Dohmae N, Takio K, Yanagida M. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev 1999; 13:22712283.
  • 153
    Fausto N, Laird AD, Webber EM. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. Faseb J 1995; 9:15271536.
  • 154
    Taub R. Liver regeneration 4: transcriptional control of liver regeneration. FASEB J 1996; 10:413427.
  • 155
    Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997; 276:6066.
  • 156
    Diehl AM. Cytokine regulation of liver injury and repair. Immunol Rev 2000; 174:160171.
  • 157
    Fausto N. Liver regeneration. J Hepatol 2000; 32:1931.
  • 158
    Taub R, Greenbaum LE, Peng Y. Transcriptional regulatory signals define cytokine dependent and independent pathways in liver regeneration. Semin Liver Dis 1999; 19:117127.
  • 159
    Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R. Liver failure and defective hepatocyte regeneration in interleukin-6- deficient mice. Science 1996; 274:13791383.
  • 160
    Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci U S A 1997; 94:14411446.
  • 161
    Sakamoto T, Liu Z, Murase N, Ezure T, Yokomuro S, Poli V, Demetris AJ. Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. Hepatology 1999; 29:403411.
  • 162
    Factor VM, Jensen MR, Thorgeirsson SS. Coexpression of C-myc and transforming growth factor α in the liver promotes early replicative senescence and diminishes regenerative capacity after partial hepatectomy in transgenic mice. Hepatology 1997; 26:14341443.
  • 163
    Morello D, Fitzgerald MJ, Babinet C, Fausto N. c-myc, c-fos, and c-jun regulation in the regenerating livers of normal and H-2K/c-myc transgenic mice. Mol Cell Biol 1990; 10:31853193.
  • 164
    Diehl AM. Roles of CCAAT/enhancer-binding proteins in regulation of liver regenerative growth. J Biol Chem 1998; 273:3084330846.
  • 165
    Lekstrom-Himes J, Xanthopoulos KG. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem 1998; 273:2854528548.
  • 166
    Greenbaum LE, Li W, Cressman DE, Peng Y, Ciliberto G, Poli V, Taub R. CCAAT enhancer-binding protein β is required for normal hepatocyte proliferation in mice after partial hepatectomy. J Clin Invest 1998; 102:9961007.
  • 167
    Buck M, Poli V, van der Geer P, Chojkier M, Hunter T. Phosphorylation of rat serine 105 or mouse threonine 217 in C/EBP beta is required for hepatocyte proliferation induced by TGF alpha. Mol Cell 1999; 4:10871092.
  • 168
    Buck M, Poli V, Hunter T, Chojkier M. C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell 2001; 8:807816.
  • 169
    Buck M, Chojkier M. Signal transduction in the liver: C/EBPbeta modulates cell proliferation and survival. Hepatology 2003; 37:731738.
  • 170
    Servillo G, Della Fazia MA, Sassone-Corsi P. Transcription factor CREM coordinates the timing of hepatocyte proliferation in the regenerating liver. Genes Dev 1998; 12:36393643.
  • 171
    Behrens A, Sibilia M, David JP, Mohle-Steinlein U, Tronche F, Schutz G, Wagner EF. Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO J 2002; 21:17821790.
  • 172
    Darnell JE, Jr. STATs and gene regulation. Science 1997; 277:16301635.
  • 173
    Li W, Liang X, Kellendonk C, Poli V, Taub R. STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration. J Biol Chem 2002; 277:2841128417.
  • 174
    Korver W, Roose J, Clevers H. The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res 1997; 25:17151719.
  • 175
    Luscher-Firzlaff JM, Westendorf JM, Zwicker J, Burkhardt H, Henriksson M, Muller R, Pirollet F, et al. Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 1999; 18:56205630.
  • 176
    Yao KM, Sha M, Lu Z, Wong GG. Molecular analysis of a novel winged helix protein, WIN. Expression pattern, DNA binding property, and alternative splicing within the DNA binding domain. J Biol Chem 1997; 272:1982719836.
  • 177
    Major ML, Lepe R, Costa RH. Forkhead box M1B (FoxM1B) transcriptional activity requires both Cdk/cyclin binding and phosphorylation-dependent recruitment of p300/CBP co activators. Mol Cell Biol 2003 (In revision).
  • 178
    Ye H, Holterman A, Yoo KW, Franks RR, Costa RH. Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase. Mol Cell Biol 1999; 19:85708580.
  • 179
    Wang X, Hung N-J, Costa RH. Earlier expression of the transcription factor HFH 11B (FOXM1B) diminishes induction of p21CIP1/WAF1 levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injury. Hepatology 2001; 33:14041414.
  • 180
    Wang X, Quail E, Hung N-J, Tan Y, Ye H, Costa RH. Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevents age-related proliferation defects in regenerating liver. Proc Natl Acad Sci U S A 2001; 98:1146811473.
  • 181
    Wang X, Krupczak-Hollis K, Tan Y, Dennewitz MB, Adami GR, Costa RH. Increased hepatic forkhead box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27Kip1 protein levels and increased Cdc25B expression. J Biol Chem 2002; 277:4431044316.
  • 182
    Wang X, Kiyokawa H, Dennewitz MB, Costa RH. The forkhead box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci U S A 2002; 99:1688116886.
  • 183
    Kalinichenko VV, Bhattacharyya D, Zhou Y, Gusarova GA, Kim W, Shin B, Costa RH. Foxf1 +/− mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury. Hepatology 2003; 37:107117.
  • 184
    Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275:22472250.
  • 185
    Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science 2001; 294:18661870.
  • 186
    Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 2003; 144:22012207.
  • 187
    Lannoy VJ, Decaux JF, Pierreux CE, Lemaigre FP, Rousseau GG. Liver glucokinase gene expression is controlled by the onecut transcription factor hepatocyte nuclear factor-6. Diabetologia 2002; 45:11361141.
  • 188
    Costa RH, Grayson DR, Xanthopoulos KG, Darnell J Jr. A liver-specific DNA-binding protein recognizes multiple nucleotide sites in regulatory regions of transthyretin, α 1-antitrypsin, albumin, and simian virus 40 genes. Proc Natl Acad Sci U S A 1988; 85:38403844.
  • 189
    Samadani U, Qian X, Costa RH. Identification of a transthyretin enhancer sequence that selectively binds the hepatocyte nuclear factor-3β isoform. Gene Expression 1996; 6:2333.
  • 190
    Qian X, Samadani U, Porcella A, Costa RH. Decreased expression of hepatocyte nuclear factor 3α during the acute-phase response influences transthyretin gene transcription. Mol Cell Biol 1995; 15:13641376.
  • 191
    Magdaleno SM, Wang G, Jackson KJ, Ray MK, Welty S, Costa RH, DeMayo FJ. Interferon-γ regulation of Clara cell gene expression: in vivo and in vitro. Am J Physiol 1997; 272:L1142L1151.
  • 192
    Vaxillaire M, Abderrahmani A, Boutin P, Bailleul B, Froguel P, Yaniv M, Pontoglio M. Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations. J Biol Chem 1999; 274:3563935646.
  • 193
    Sladek FM, Seidel SD. Hepatocyte nuclear factor 4α. In: BurrisTP, McCabeERB, eds. Nuclear Receptors and Genetic Disease. San Diego: Academic Press, 2001;309361.
  • 194
    Jaime M, Pujol MJ, Serratosa J, Pantoja C, Canela N, Casanovas O, Serrano M, et al. The p21(Cip1) protein, a cyclin inhibitor, regulates the levels and the intracellular localization of CDC25A in mice regenerating livers. Hepatology 2002; 35:10631071.