SEARCH

SEARCH BY CITATION

References

  • 1
    Barone-Varelas J, Schnitzer TJ, Meng Q, et al. Age-related differences in the metabolism of proteoglycans in bovine articular cartilage explants maintained in the presence of insulin-like growth factor I. Connect Tissue Res 1991; 26(1–2): 10120.
  • 2
    Bolton MC, Dudhia J, Bayliss MT. Age-related changes in the synthesis of link protein and aggrecan in human articular cartilage: implications for aggregate stability. Biochem J 1999; 337(Pt 1): 7782.
  • 3
    Buschmann MD, Gluzband YA, Grodzinsky AJ, et al. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 1992; 10(6): 74558.
  • 4
    Buschmann MD, Soulhat J, Shirazi-Adl A, et al. Confined compression of articular cartilage: linearity in ramp and sinusoidal tests and the importance of interdigitation and incomplete confinement. J Biomech 1998; 31(2): 1718.
  • 5
    Chaipinyo K, Oakes BW, van Damme MP. Effects of growth factors on cell proliferation and matrix synthesis of low-density, primary bovine chondrocytes cultured in collagen I gels. J Orthop Res 2002; 20(5): 10708.
  • 6
    Charlebois M, McKee MD, Buschmann MD. Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth. J Biomech Eng 2004; 126(2): 12937.
  • 7
    Di Micco MA, Waters SN, Akeson WH, Sah RL. Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism. Osteoarthr Cartilage 2002; 10(3): 21825.
  • 8
    Dozin B, Malpeli M, Camardella L, et al. Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects. Matrix Biol 2002; 21(5): 44959.
  • 9
    Dumont J, Lonescu M, Reiner A, et al. Mature full-thickness articular cartilage explants attached to bone are physiologically stable over long-term culture in serum-free media. Connect Tissue Res 1999; 40(4): 25972.
  • 10
    Fortin M, Soulhat J, Shirazi-Adl A, et al. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J Biomech Eng 2000; 122(2): 18995.
  • 11
    Front P, Aprile F, Mitrovic DR, Swann DA. Age-related changes in the synthesis of matrix macromolecules by bovine articular cartilage. Connect Tissue Res 1989; 19(2–4): 12133.
  • 12
    Gooch KJ, Blunk T, Courier DL, et al. 1GF-I and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun 2001; 286(5): 90915.
  • 13
    Grushko G, Schneiderman R, Maroudas A. Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res 1989; 19(24): 14976.
  • 14
    Gu WY, Yao H, Huang CY, Cheung HS. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J Biomech 2003; 36(4): 5938.
  • 15
    Hauselmann HJ, Aydelotte MB, Schumacher BL, et al. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 1992; 12(2): 11629.
  • 16
    Hoemann CD. Molecular and biochemical assays for cartilage components. In: De CeuninckF, SabatiniM, PastoureauP, editors. Cartilage and osteoarthritis. Structure and in vivo analysis, vol. 2. Totowa, New Jersey: Humana Press: 2004.
  • 17
    Hoemann CD, Sun J, Chrzanowski V, Buschmann MD. A multivalent assay to detect glycosaminoglycan, protein, collagen, RNA, and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage. Anal Biochem 2002; 300(1): 110.
  • 18
    Hoemann CD, Sun J, Légaré A, et al. Tissue engineering of cartilage using an injectable and adhesive chitosan-based celldelivery vehicle. Osteoarthr Cartilage 2005; 13(4): 31829.
  • 19
    Hunter CJ, Mouw JK, Levenston ME. Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthr Cartilage 2004; 12(2): 11730.
  • 20
    Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage 2002; 10(6): 43263.
  • 21
    Iqbal J, Dudhia J, Bird JL, Bayliss MT. Age-related effects of TGF-bcta on proteoglycan synthesis in equine articular cartilage. Biochem Biophys Res Commun 2000; 274(2): 46771.
  • 22
    Johnson EM, Deen WM. Hydraulic permeability of agarose gels. AIChE J 1996; 42:12204.
  • 23
    Kamada H, Masuda K, D'Souza AL, et al. Age-related differences in the accumulation and size of hyaluronan in alginate culture. Arch Biochem Biophys 2002; 408(2): 1929.
  • 24
    Kisiday JD, Jin M, Di Micco MA, et al. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech 2004; 37(5): 595604.
  • 25
    Livne E, Weiss A. In vitro effect of hormones and growth factors on the incorporation of 3H-leucine, 35S-sulfate and 3H-proline by chondrocytes of aging mice. Mech Ageing Dev 1993; 72(3): 21329.
  • 26
    Loeser RF, Shanker G, Carlson CS, et al. Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum 2000; 43(9): 211020.
  • 27
    Martin JA, Ellerbroek SM, Buckwalter JA. Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J Orthop Res 1997; 15(4): 4918.
  • 28
    Mauck RL, Wang CC, Oswald ES, et al. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartilage 2003; 11(12): 87990.
  • 29
    Messai H, Duchossoy Y, Khatib AM, et al. Articular chondrocytes from aging rats respond poorly to insulin-like growth factor-1: an altered signaling pathway. Mech Ageing Dev 2000; 115(1–2): 2137.
  • 30
    Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 1980; 102(1): 7384.
  • 31
    Pacifici M. Independent secretion of proteoglycans and collagens in chick chondrocyte cultures during acute ascorbic acid treatment. Biochem J 1990; 272(1): 1939.
  • 32
    Plaas AH, Sandy JD. Age-related decrease in the link-stability of proteoglycan aggregates formed by articular chondrocytes. Biochem J 1984; 220(1): 33740.
  • 33
    Rosen F, McCabe G, Quach J, et al. Differential effects of aging on human chondrocyte responses to transforming growth factor beta: increased pyrophosphate production and decreased cell proliferation. Arthritis Rheum 1997; 40(7): 127581.
  • 34
    Sandy JD, Plaas AH. Age-related changes in the kinetics of release of proteoglycans from normal rabbit cartilage explants. J Orthop Res 1986; 4(3): 26372.
  • 35
    Schafer SJ, Luyten FP, Yanagishita M, Reddi AH. Proteoglycan metabolism is age related and modulated by isoforms of plateletderived growth factor in bovine articular cartilage explant cultures. Arch Biochem Biophys 1993; 302(2): 4318.
  • 36
    Soulhat J, Buschmann MD, Shirazi-Adl A. A fibril-network reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng 1999; 121(3): 3407.
  • 37
    Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 1977; 36(2): 1219.
  • 38
    Verbruggen G, Cornelissen M, Almqvist KF, et al. Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthr Cartilage 2000; 8(3): 1709.
  • 39
    Waldman SD, Spiteri CG, Grynpas MD, et al. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res 2003; 21(4): 5906.
  • 40
    Weisser J, Rahfoth B, Timmermann A, et al. Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose. Osteoarthr Cartilage 2001; 9(Suppl A): S4854.
  • 41
    Zile MR, Cowles MK, Buckley JM, et al. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells. Am J Physiol 1998; 274(6 Pt 2): H2188202.