SEARCH

SEARCH BY CITATION

References

  • Alpert, P., Tsidulko, M. & Itziksohn, D. (1994). A shallow short-lived Meso-β scale cyclone over the Gulf of Antalia – a numerical study. In Preprints, 6th Conference on Mesoscale Processes, Am. Meteorol. Soc., 508509.
  • Blier, W. & Ma, Q. (1997). A Mediterranean Sea hurricane?. In Preprints, 22nd Conference on Hurricanes and Tropical Meteorology, Am. Meteorol. Soc., 592595.
  • Burpee, R. W. (1986). Mesoscale structure of hurricanes. In Mesoscale Meteorology and Forecasting (ed. Ray, P.S.), Am. Meteorol. Soc., 311330.
  • Buzzi, A. & Tibaldi, S. (1978). Cyclogenesis in the lee of the Alps: a case study. Q. J. R. Meteorol. Soc., 104: 271287.
  • Charney, J. G. & Eliassen, A. (1964). On the growth of the hurricane depression. J. Atmos. Sci., 21: 6875.
  • Craig, G. C. (1995). Radiation and polar lows. Q. J. R. Meteorol. Soc., 121: 7994.
  • Craig, G. C. & Gray, S. L. (1996). CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53: 35283540.
  • Cullen, M. J. P. & Davies, T. (1991). A conservative split-explicit integration scheme with fourth order horizontal advection. Q. J. R. Meteorol. Soc., 117: 9931002.
  • Cullen, M. J. P. (1993). The Unified Forecast/ Climate Model. Meteorol. Mag., 122: 8194.
  • Dolman, A. J. & Gregory, D. (1992). The parametrization of rainfall interception in GCMs. Q. J. R. Meteorol. Soc., 118: 455467.
  • Emanuel, K. A. (1986). An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43: 585604.
  • Emanuel, K. A. & Rotunno, R. (1989). Polar lows as arctic hurricanes. Tellus, 41A: 117.
  • Ernst, J. A. & Matson, M. (1983). A Mediterranean tropical storm?. Weather, 38: 332337.
  • Foley, G. R. (1995). Observations and analysis of tropical cyclones. Global Perspectives on Tropical Cyclones, WMO Technical Document No.TCP-38, World Meteorological Organization, 120.
  • Flocas, A. A. (1994). A Course in Meteorology and Climatology. Zitis Press (Thessaloniki, Greece). 465 pp. (in Greek).
  • Flocas, H. A. & Karacostas, T. S. (1996). Cyclogenesis over the Aegean Sea: identification and synoptic categories. Meteorol. Appl., 3: 5361.
  • Gregory, D. & Allen, S. (1991). The effect of convective scale down draughts upon NWP and climate simulations. In Preprints of the 9th Conf. on Numerical Weather Prediction, 14–18 October 1991, Denver, CO, USA.
  • Gregory, D. & Rowntree, P. R. (1990). A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118: 14831506.
  • Gregory, D. (1995). A consistent treatment of the evaporation of rain and snow for use in large-scale models. Mon. Wea. Rev., 123: 27162732.
  • Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc., 111: 877946.
  • Hoskins, B. J. & Berrisford, P. (1988). A potential vorticity perspective of the storm of 15–16 October 1987. Weather, 43: 122129.
  • Jorgensen, D. P. (1984). Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41: 12871311.
  • Lagouvardos, K., Kotroni, V., Nickovic, S. & Kallos, G. (1996). Evidence of a winter ‘Tropical Storm’ over southeastern Mediterranean: simulations with the Regional Atmospheric Modelling System (RAMS) and the ETA/NMC model. In Preprints, 7th Conference on Mesoscale Processes, Am. Meteorol. Soc., 5355.
  • Malguzzi, P., Chessa, P. & Buzzi, A. (1998). The role of surface heat fluxes in the development of a Mediterranean ‘Hurricane’. In Annales Geophysicae. Part II: Hydrology, Oceans & Atmosphere (Supplement II to Volume 16), EGS, C632.
  • Mayengon, R. (1983). Cyclone in the Mediterranean, January 1982. Mariners Weather Log, 27: 141143.
  • Mayengon, R. (1984). Warm core cyclones in the Mediterranean. Mariners Weather Log, 28: 69.
  • Milton, S. F. & Wilson, C. A. (1996). The impact of parametrized subgridscale orographic forcing on systematic errors in a global NWP model. Mon. Wea. Rev., 9: 20232045.
  • Ooyama, K. V. (1964). A dynamical model for the study of tropical cyclone development. Geophys. Int., 4: 187198.
  • Ooyama, K. V. (1982). Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteorol. Soc. Japan, 60: 369380.
  • Prezerakos, N. G. & Flocas, H. A. (1996). The formation of a dynamically unstable ridge at 500 hPa as a precursor of surface cyclogenesis in the central Mediterranean. Meteorol. Appl., 3: 101111.
  • Pytharoulis, I. (1995). Simulation of a Mediterranean Cyclone. M.Sc. Dissertation. Department of Meteorology, University of Reading.
  • Rasmussen, E. (1979). The polar low as an extratropical CISK disturbance. Q. J. R. Meteorol. Soc., 105: 531549.
  • Rasmussen, E. & Zick, C. (1987). A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus, 39A: 408425.
  • Rasmussen, E. A., Pedersen, T. B., Pedersen, L. T. & Turner, J. (1992). Polar lows and arctic instability lows in the Bear Island region. Tellus, 44A: 133154.
  • Reale, O. (1998). Dynamics and classification of two sub-syn-optic scale ‘Hurricane-like’ vortices over the Mediterranean Sea. In Annales Geophysicae. Part II: Hydrology, Oceans & Atmosphere (Supplement II to Volume 16), EGS, C634.
  • Reale, O. & Atlas, R. (1998). A tropical-like cyclone in the extratropics. International Centre for Theoretical Physics preprint, Trieste, Italy. No. IC98007.
  • Rotunno, R. & Emanuel, K. A. (1987). An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44: 542561.
  • Senior, C. A. & Mitchell, J. F. B. (1993). Carbon dioxide and climate: the impact of cloud parametrization. J. Climate, 6: 393418.
  • Simmons, A. J. & Burridge, D. M. (1981). An energy and angular momentum conserving finite difference scheme and hybrid coordinates. Mon. Wea. Rev., 109: 758766.
  • Slingo, A. (1989). A GCM parametrization for the shortwave radiative properties of clouds. J. Atmos. Sci., 46: 14191427.
  • Smith, R. N. B. (1990). A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc., 116 : 435460.
  • Smith, R. N. B. (1994). Experience and developments with the layer cloud and boundary layer mixing schemes in the UK Meteorological Office Unified Model. In Proceedings of ECMWF Workshop on Parametrization of the Cloud Topped Boundary Layer, 8–11 June 1993, ECMWF, Reading.
  • Tuleya, R. E. & Kurihara, Y. (1978). A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci., 35: 242257.
  • Uccelini, L. W. & Johnson, D. R. (1977). The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107: 682703.
  • Wakimoto, R. M. & Black, P. G. (1994). Damage survey of Hurricane Andrew and its relationship to the eyewall. Bull. Am. Meteorol. Soc., 75: 189200.
  • Wallace, J. M. & Hobbs, P. V. (1977). Atmospheric Science – An Introductory Survey. Academic Press, 467 pp.
  • Weldon, R. B. & Holmes, S. J. (1991). Water vapour imagery: interpretation and applications to weather analysis and forecasting. NOAA Tech. Report NESDIS 57, 213 pp.
  • Winstanley, D. (1970). The north African flood disaster, September 1969. Weather, 25: 390403.
  • Ziakopoulos, D. & Marinaki, A. (1996). Mesoscale Mediterranean vortices with characteristics of tropical cyclones. In Preprints, National Conference on Meteorology-Climatology-Physics of the Atmosphere, Athens, Greece, 154159 (in Greek).