SEARCH

SEARCH BY CITATION

References

  • Carrasco, J. F. & Bromwich, D. H. (1995). A Midtropospheric Subsynoptic-scale Vortex that developed over the Ross Sea and Ross Ice Shelf of Antarctica. Antarctic Sci., 7: 199210.
  • Doyle, J. D. & Shapiro, M. A. (1999). Flow response to large-scale topography: the Greenland tip jet. Tellus, 51A: 728-748.
  • Ekholm, S. (1996). A full coverage, high-resolution, topo-graphic model of Greenland computed from a variety of digital elevation data. J. Geophys. Res., 101: 2196121972.
  • Engels, R. & Heinemann, G. (1996). Three-dimensional structures of summertime Antarctic meso-scale cyclones: Part II: Numerical simulations with a limited area model. Global Atmosphere-Ocean System, 4: 181208.
  • Gallée, H. (1995). Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Mon. Wea. Rev., 123: 20512069.
  • Grønås, S. & Hellevik, O. E. (1982). A limited area prediction model at the Norwegian Meteorological Institute. Technical Report No. 61, ISSN 0332–9879, The Norwegian Meteorological Institute, Oslo, Norway, 75pp.
  • Grønås, S., Foss, A. & Lystad, M. (1987). Numerical simulations of polar lows in the Norwegian Sea. Tellus, 39A: 334353.
  • Grønås, S. & Skeie, P. (1999). A case study of strong winds at an arctic front. Tellus, 51A: 865879.
  • Hedegaard, K. (1982). Wind vector and extreme wind statistics in Greenland. Weather Service Report No. 1., ISBN 8774781987, Danish Meteorological Institute, Copenhagen, Denmark, 106pp.
  • Heinemann, G. (1999). The KABEG'97 field experiment: An aircraft-based study of katabatic wind dynamics over the Greenland ice sheet. Boundary-Layer Meteor., 93: 75116.
  • Heinemann, G. & Claud, C. (1997). Report of a workshop on ‘Theoretical and observational studies of polar lows’ of the European Geophysical Society Polar Lows Working Group. Bull. Am. Meteorol. Soc., 78: 26432658.
  • Kaas E. & Isaksen, L. (1989). To Piteraq'er forudsagt af DK-LAM. Vejret, 2, Danish Meteorological Society: 2433.
  • Klein, T. & Heinemann, G. (2001). On the forcing mechanisms of mesocyclones in the eastern Weddell Sea region, Antarctica: Process studies using a mesoscale numerical model. Meteorologische Zeitung N.F., 10: 113122.
  • Klein, T., Heinemann, G., Bromwich, D. H., Cassano, J. J. & Hines, K. M. (2001). Mesoscale Modeling of Katabatic Winds Over Greenland and Comparisons with AWS and Aircraft Data. Meteor. Atmosph. Phys., 78: 115132.
  • Kristjánsson, J. E. & McInnes, H. (1999). The impact of Greenland on cyclone evolution in the North Atlantic. Q. J. R. Meteorol. Soc., 125: 28192834.
  • Lieder, M. & Heinemann, G. (1999). A summertime Antarctic mesocyclone event over the Southern Pacific during FROST SOP3: A meso-scale analysis using AVHRR, SSM/I, ERS and numerical model data. Weather and Forecasting, 14: 893908.
  • Nielsen, N. W. (1997). An early Autumn polar low formation over the Norwegian Sea. J. Geophys. Res., 102: 1395513973.
  • Nordeng, T. E. (1986). Parameterization of Physical Processes in a Three-Dimensional Numerical Weather Prediction Model. Technical Report No. 65, ISSN 0332–9879, The Norwegian Meteorological Institute, Oslo, Norway, 48pp.
  • Nordeng, T. E. & Rasmussen, E. A. (1992). A most beautiful polar low: A case study of a polar low development in the Bear Island region. Tellus, 44A: 8199.
  • Rasmussen, L. (1989). Den dag, Angmagssalik naesten blaeste i havet. Vejret, 2, Danish Meteorological Society: 314.
  • Skeie, P. & Grønås, S. (2000). Strongly stratified easterly flows across Spitsbergen. Tellus, 52A: 473486.