• atavisms;
  • convergence;
  • embryonic development;
  • evolution;
  • homology;
  • homoplasy;
  • parallelism;
  • reversals;
  • rudiments;
  • vestiges;
  • descent with modification


Homology is at the foundation of comparative studies in biology at all levels from genes to phenotypes. Homology similarity because of common descent and ancestry, homoplasy is similarity arrived at via independent evolution However, given that there is but one tree of life, all organisms, and therefore all features of organisms, share degree of relationship and similarity one to another. That sharing may be similarity or even identity of structure the sharing of a most recent common ancestor–as in the homology of the arms of humans and apes–or it reflect some (often small) degree of similarity, such as that between the wings of insects and the wings of groups whose shared ancestor lies deep within the evolutionary history of the Metazoa. It may reflect sharing entire developmental pathways, partial sharing, or divergent pathways. This review compares features classified homologous with the classes of features normally grouped as homoplastic, the latter being convergence, parallelism, reversals, rudiments, vestiges, and atavisms. On the one hand, developmental mechanisms may be conserved, when a complete structure does not form (rudiments, vestiges), or when a structure appears only in some individuals (atavisms). On the other hand, different developmental mechanisms can produce similar (homologous) features Joint examination of nearness of relationship and degree of shared development reveals a continuum within expanded category of homology, extending from homology [RIGHTWARDS ARROW] reversals [RIGHTWARDS ARROW] rudiments [RIGHTWARDS ARROW] vestiges [RIGHTWARDS ARROW] atavisms [RIGHTWARDS ARROW] parallelism, with convergence as the only class of homoplasy, an idea that turns out to be surprisingly old. realignment provides a glimmer of a way to bridge phylogenetic and developmental approaches to homology homoplasy, a bridge that should provide a key pillar for evolutionary developmental biology (evo-devo). It will and in a practical sense cannot, alter how homoplastic features are identified in phylogenetic analyses. But rudiments, reversals, vestiges, atavisms and parallelism as closer to homology than to homoplasy should guide toward searching for the common elements underlying the formation of the phenotype (what some have called deep homology of genetic and/or cellular mechanisms), rather than discussing features in terms of shared independent evolution.