SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Takashi Mimitsuka, Kenji Sawai, Koji Kobayashi, Takeshi Tsukada, Norihiro Takeuchi, Katsushige Yamada, Hiroyasu Ogino, Tetsu Yonehara, Production of d-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: Enhancement in d-lactic acid carbon yield, Journal of Bioscience and Bioengineering, 2015, 119, 1, 65

    CrossRef

  2. 2
    C. Verheyen, M. Jekle, T. Becker, Effects of Saccharomyces cerevisiae on the structural kinetics of wheat dough during fermentation, LWT - Food Science and Technology, 2014, 58, 1, 194

    CrossRef

  3. 3
    Yuma Ito, Takashi Hirasawa, Hiroshi Shimizu, Metabolic engineering ofSaccharomyces cerevisiaeto improve succinic acid production based on metabolic profiling, Bioscience, Biotechnology, and Biochemistry, 2014, 78, 1, 151

    CrossRef

  4. 4
    G. O. Bozdag, D. Greig, The genetics of a putative social trait in natural populations of yeast, Molecular Ecology, 2014, 23, 20
  5. 5
    Ana Martins, Biotechnology and Bioinformatics, 2014,

    CrossRef

  6. 6
    Toshihiro Suzuki, Takatoshi Sakamoto, Minetaka Sugiyama, Nobuhiro Ishida, Hiromi Kambe, Shusei Obata, Yoshinobu Kaneko, Haruo Takahashi, Satoshi Harashima, Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae, Journal of Bioscience and Bioengineering, 2013, 115, 5, 467

    CrossRef

  7. 7
    Eiji Nagamori, Hideaki Fujita, Kazunori Shimizu, Kenro Tokuhiro, Nobuhiro Ishida, Haruo Takahashi, Fed-batch system for cultivating genetically engineered yeast that produces lactic acid via the fermentative promoter, Journal of Bioscience and Bioengineering, 2013, 115, 2, 193

    CrossRef

  8. 8
    Takashi Hirasawa, Masakado Takekuni, Katsunori Yoshikawa, Aki Ookubo, Chikara Furusawa, Hiroshi Shimizu, Genome-wide identification of the targets for genetic manipulation to improve l-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection, Journal of Biotechnology, 2013, 168, 2, 185

    CrossRef

  9. 9
    Eiji Nagamori, Kazunori Shimizu, Hideaki Fujita, Kenro Tokuhiro, Nobuhiro Ishida, Haruo Takahashi, Metabolic flux analysis of genetically engineered Saccharomyces cerevisiae that produces lactate under micro-aerobic conditions, Bioprocess and Biosystems Engineering, 2013, 36, 9, 1261

    CrossRef

  10. 10
    Tahmineh Nasrollahnejad, Johan Urbanus, Joop H. ter Horst, Dirk Verdoes, Cornelis P.M. Roelands, Electrochemically Induced Crystallization as a Sustainable Method for Product Recovery of Building Block Chemicals: Techno-Economic Evaluation of Fumaric Acid Separation, Industrial Biotechnology, 2012, 8, 3, 133

    CrossRef

  11. 11
    António Pacheco, Gabriel Talaia, Joana Sá-Pessoa, Daniela Bessa, Maria José Gonçalves, Roxana Moreira, Sandra Paiva, Margarida Casal, Odília Queirós, Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2, FEMS Yeast Research, 2012, 12, 3
  12. 12
    Toshihiro Suzuki, Minetaka Sugiyama, Kenta Wakazono, Yoshinobu Kaneko, Satoshi Harashima, Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae, Journal of Bioscience and Bioengineering, 2012, 113, 4, 421

    CrossRef

  13. 13
    Michael Sauer, Danilo Porro, Diethard Mattanovich, Paola Branduardi, 16 years research on lactic acid production with yeast – ready for the market?, Biotechnology and Genetic Engineering Reviews, 2010, 27, 1, 229

    CrossRef

  14. 14
    Kenji Okano, Tsutomu Tanaka, Chiaki Ogino, Hideki Fukuda, Akihiko Kondo, Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits, Applied Microbiology and Biotechnology, 2010, 85, 3, 413

    CrossRef

  15. 15
    J. Urbanus, R.J.M. Bisselink, K. Nijkamp, J.H. ter Horst, D. Verdoes, C.P.M. Roelands, Integrated product removal of slightly water-soluble carboxylates from fermentation by electrochemically induced crystallization, Journal of Membrane Science, 2010, 363, 1-2, 36

    CrossRef

  16. 16
    Andreas M. Raab, Gabi Gebhardt, Natalia Bolotina, Dirk Weuster-Botz, Christine Lang, Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid, Metabolic Engineering, 2010, 12, 6, 518

    CrossRef

  17. 17
    Kenro Tokuhiro, Nobuhiro Ishida, Eiji Nagamori, Satoshi Saitoh, Toru Onishi, Akihiko Kondo, Haruo Takahashi, Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene, Applied Microbiology and Biotechnology, 2009, 82, 5, 883

    CrossRef

  18. 18
    Fumi Osawa, Toshio Fujii, Takehisa Nishida, Nobuki Tada, Toru Ohnishi, Osamu Kobayashi, Toshihiro Komeda, Satoshi Yoshida, Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii, Yeast, 2009, 26, 9
  19. 19
    Dina Petranovic, Goutham N. Vemuri, Impact of yeast systems biology on industrial biotechnology, Journal of Biotechnology, 2009, 144, 3, 204

    CrossRef

  20. 20
    Takashi Hirasawa, Aki Ookubo, Katsunori Yoshikawa, Keisuke Nagahisa, Chikara Furusawa, Hideki Sawai, Hiroshi Shimizu, Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in l-lactate production by Saccharomyces cerevisiae, Applied Microbiology and Biotechnology, 2009, 84, 6, 1149

    CrossRef

  21. 21
    Paola Branduardi, Carla Smeraldi, Danilo Porro, Metabolically Engineered Yeasts: ‘Potential’ Industrial Applications, Journal of Molecular Microbiology and Biotechnology, 2008, 15, 1, 31

    CrossRef

  22. 22
    Nobuhiro ISHIDA, Toru ONISHI, KAGAKU TO SEIBUTSU, 2008, 46, 1, 8

    CrossRef

  23. 23
    Alexander Kern, Emma Tilley, Iain S. Hunter, Matic Legiša, Anton Glieder, Engineering primary metabolic pathways of industrial micro-organisms, Journal of Biotechnology, 2007, 129, 1, 6

    CrossRef

  24. 24
    Douglas C. Pecota, Vineet Rajgarhia, Nancy A. Da Silva, Sequential gene integration for the engineering of Kluyveromyces marxianus, Journal of Biotechnology, 2007, 127, 3, 408

    CrossRef

  25. 25
    Shang-Tian Yang, Xiaoguang Liu, Yali Zhang, Bioprocessing for Value-Added Products from Renewable Resources, 2007,

    CrossRef

  26. 26
    Nobuhiro Ishida, Tomiko Suzuki, Kenro Tokuhiro, Eiji Nagamori, Toru Onishi, Satoshi Saitoh, Katsuhiko Kitamoto, Haruo Takahashi, d-Lactic acid production by metabolically engineered Saccharomyces cerevisiae, Journal of Bioscience and Bioengineering, 2006, 101, 2, 172

    CrossRef

  27. 27
    ISAK S. PRETORIUS, PETER B. HØJ, Grape and wine biotechnology: Challenges, opportunities and potential benefits, Australian Journal of Grape and Wine Research, 2005, 11, 2
  28. 28
    Carola Parolin, Andrea Dal Corso, Lilia Alberghina, Danilo Porro, Paola Branduardi, Heterologous production of five Hepatitis C virus-derived antigens in three Saccharomyces cerevisiae host strains, Journal of Biotechnology, 2005, 120, 1, 46

    CrossRef

  29. 29
    S Colombié, S Dequin, J.M Sablayrolles, Control of lactate production by Saccharomyces cerevisiae expressing a bacterial LDH gene, Enzyme and Microbial Technology, 2003, 33, 1, 38

    CrossRef

  30. 30
    Erdogan E. Hakki, Mahinur S. Akkaya, RT-PCR amplification of a Rhizopus oryzae lactate dehydrogenase gene fragment, Enzyme and Microbial Technology, 2001, 28, 2-3, 259

    CrossRef

  31. 31
    Barbara M. Bakker, Karin M. Overkamp, Antonius J.A. Maris, Peter Kötter, Marijke A.H. Luttik, Johannes P. Dijken, Jack T. Pronk, Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiology Reviews, 2001, 25, 1
  32. 32
    Isak S. Pretorius, Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking, Yeast, 2000, 16, 8
  33. 33
    L Brambilla, D Bolzani, C Compagno, V Carrera, J.P Dijken, J.T Pronk, B.M Ranzi, L Alberghina, D Porro, NADH reoxidation does not control glycolytic flux during exposure of respiring Saccharomyces cerevisiae cultures to glucose excess, FEMS Microbiology Letters, 1999, 171, 2
  34. 34
    Eri Adachi, Mikiko Torigoe, Minetaka Sugiyama, Jun-Ichi Nikawa, Kazuyuki Shimizu, Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value, Journal of Fermentation and Bioengineering, 1998, 86, 3, 284

    CrossRef

  35. 35
    Douglas C Cameron, Frank WR Chaplen, Developments in metabolic engineering, Current Opinion in Biotechnology, 1997, 8, 2, 175

    CrossRef

  36. 36
    Nobuhiro Ishida, Satoshi Saitoh, Toru Ohnishi, Kenro Tokuhiro, Eiji Nagamori, Katsuhiko Kitamoto, Haruo Takahashi, Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure l−(+)−lactic acid, Applied Biochemistry and Biotechnology, 1996, 131, 1-3, 795

    CrossRef

  37. 37
    David Moore, Lilyann Novak Frazer, One stop mycology, Mycological Research, 1996, 100, 1, 117

    CrossRef

  38. 38
    JACK T. PRONK, H. YDE STEENSMA, JOHANNES P. VAN DIJKEN, Pyruvate Metabolism in Saccharomyces cerevisiae, Yeast, 1996, 12, 16
  39. 39
    Kenji Okano, Tsutomu Tanaka, Akihiko Kondo, Lactic Acid,
  40. 40
    Todd Banner, Arlene Fosmer, Holly Jessen, Erin Marasco, Brian Rush, Jon Veldhouse, Mervyn de Souza, Microbial Bioprocesses for Industrial-Scale Chemical Production,