References and Notes

  • 1
    Jefferis, R.; Lund, J.; Pound, J. IgG-Fc mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol. Rev. 1998, 163, 5076.
  • 2
    Jefferis, R.; Lund, J. Interaction sites on human IgG-Fc for FcγR: current models. Immunol. Lett. 2002, 82, 5765.
  • 3
    Jefferis, R. Glycosylation of human IgG antibodies: relevance to therapeutic applications. BioPharm 2002, 14, 1926.
  • 4
    Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 1981, 20, 0, 23612370.
  • 5
    Mimura, Y.; Church, S.; Ghirlando, R.; Dong, S.; Goodall, M.; Lund, J.; Jefferis, R. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol. Immunol. 2000, 37, 697706.
  • 6
    Mimura, Y.; Sondermann, P.; Ghirlando, R.; Lund, J.; Young, S. P.; Goodall, M.; Jefferis, R. The role of oligosaccharide residues of IgG1-Fc in FcγIIb binding. J. Biol. Chem. 2001, 276, 4553945547.
  • 7
    Krapp, S.; Mimura, Y.; Jefferis, R.; Huber, R.; Sondermann, P. Structural analysis of human IgG glycoforms reveals a correlation between oligosaccharide content, structural integrity and Fcγ-receptor affinity. J. Mol. Biol. 2003, 325, 979989.
  • 8
    Takahashi, N.; Nakagawa, H.; Fujikawa, K.; Kawamura, Y.; Tomiya N. Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Ann. Biochem. 1995, 226, 139146.
  • 9
    High, S.; Lecomte, F. J.; Russell, S. J.; Abell, B. M.; Oliver, J. D. Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett. 2000, 476, 3841.
  • 10
    Jakob, C. A.; Burda, P.; Roth, J.; Aebi, M. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. Cell Biol. 1998, 142, 12231233.
  • 11
    Galili, U. The alpha-gal epitope (Gal alpha 1–3 Gal beta 1–4GlcNAc-R) in xenotransplantation. Biochimie 2001, 83, 557563.
  • 12
    Dor, FJ.; Alt, A.; Cooper, D. K. Gal alpha 1,3 Gal expression on porcine pancreatic islets, testis, spleen, and thymus. Xenotransplantation 2004, 11, 101106.
  • 13
    Cooper D. K. Xenoantigensand xenoantibodies. Xenotransplantation 1998, 5, 617.
  • 14
    Magnusson, S.; Mansson, J. E.; Strokan, V.; Jussila, R.; Kobayashi, T.; Rydberg, L.; Romano, E.; Breimer, M. E. Release of pig leukocytes during pig kidney perfusion and characterization of pig lymphocyte carbohydrate xenoantigens. Xenotransplantation 2003, 10, 432445.
  • 15
    Youings, A.; Chang, S. C.; Dwek, R. A.; Scragg, I. G. Site-specific glycosylation of human immunoglobulin G is altered in four rheumatoid arthritis patients. Biochem. J. 1996, 314, 62130.
  • 16
    Jefferis, R. Glycosylation of antibody molecules: functional significance. Glycoconjugate J. 1993, 10, 357361.
  • 17
    Dunn-Walters D.; Boursier L.; Spencer J. Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol. Immunol. 2000, 37, 10713.
  • 18
    Zhu, D.; Ottensmeier, C. H.; Du, M. Q.; McArthy, H.; Stevenson, F. K. Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt's lymphoma and mucosa-associated lymphoid tissue lymphoma. Br. J. Haematol. 2003, 120, 21722.
  • 19
    Coloma, M. J.; Trinh, R. K.; Martinez, A. R.; Morrison, S. L. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1[RIGHTWARDS ARROW]6) dextran antibody. J. Immunol. 1999, 162, 216270.
  • 20
    Gala, F. A.; Morrison, S. L. V region carbohydrate and antibody expression. J. Immunol. 2004, 172, 548994.
  • 21
    Wright, A.; Morrison, S. L.; Kobata, A. Glycosylation of the variable region of immunoglobulin G-site specific maturation of the sugar chains. Mol. Immunol. 1995, 32, 93140.
  • 22
    Co, M. S.; Scheinberg, D. A.; Avdalovic, N. M.; McGraw, K.; Vasquez, M.; Caron, P. C.; Queen, C. Genetically engineered deglycosylation of the variable domain increases the affinity of an anti-CD33 monoclonal antibody. Mol. Immunol. 1993, 30, 13617.
  • 23
    Fujimura, Y.; Tachibana, H.; Eto, N.; Yamada, K. Antigen binding of an ovomucoid-specific antibody is affected by a carbohydrate chain located on the light chain variable region. Biosci. Biotechnol. Biochem. 2000, 64, 2298305.
  • 24
    Leibiger, H.; Wustner, D.; Stigler, R. D.; Marx, U. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Biochem. J. 1999, 338, 529538.
  • 25
  • 26
    Umana, P.; Jean-Mairet, J.; Moudry, R.; Amstutz, H.; Bailey, J. E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 1999, 17, 176180.
  • 27
    Davies, J.; Jiang, L.; LaBarre, M. J.; Anderson, D.; Reff, M. Expression of GTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies of altered glycoforms leads to an increase in ADCC thrO' higher affinity for FcRIII. Biotechnol. Bioeng. 2001, 74, 288294.
  • 28
    Shields, R. L.; Lai, J.; Keck, R.; O'Connell, L. Y.; Hong, K.; Meng, Y. G.; Weikert, S. H.; Presta, L. G. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 2002, 277, 2673340.
  • 29
    Shinkawa, T.; Nakamura, K.; Yamane, N.; Shoji-Hosaka, E.; Kanda, Y.; Sakurada, M.; Uchida, K.; Anazawa, H.; Satoh, M.; Yamasaki, M.; Hanai, N.; Shitara, K. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 2003, 278, 34663473.
  • 30
    Okazaki, A.; Shoji-Hosaka, E.; Nakamura, K.; Wakitani, M.; Uchida, K.; Kakita, S.; Tsumoto, K.; Kumagai, I.; Shitara, K. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J. Mol. Biol. 2004, 336, 12391249.
  • 31
    Lund, J.; Takahashi, N.; Pound, J.; Goodall, M.; Jefferis, R. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human FcγRI and influence the synthesis of its oligosaccharide chains. J. Immunol. 1996, 157, 49634969.
  • 32
    Idusogie, E. E.; Presta, L. G.; Gazzano-Santoro, H.; Totpal, K.; Wong, P. Y.; Ultsch, M.; Meng, Y. G.; Mulkerrin, M. G. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J. Immunol. 2000, 164, 41784184.
  • 33
    Shields, R. L.; Lai, J.; Keck, R.; O'Connell, L. Y.; Hong, K.; Meng, Y. G.; Weikert, S. H.; Presta, L. G. High-resolution mapping of the binding site on human IgG1 for FcRI, FcRII, FcRIII, and FcRn and design of IgG1 variants with improved binding to the FcR. J. Biol. Chem. 2001, 276, 65916604.
  • 34
    Sondermann, P.; Huber, R.; Oosthuizen, V.; Jacob, U. The 3 .2-A crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature 2000, 406, 267273.
  • 35
    Radaev, S.; Motyka, S.; Fridman, W. H.; Sautes-Fridman, C.; Sun, P. D. The structure of human type III Fcγ receptor in complex with Fc. J. Biol. Chem. 2001, 276, 1646916477.
  • 36
    Burmeister, W. P.; Huber, A. H.; Bjorkman, P. J. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 1994, 372, 379383.
  • 37
    Sauer-Eriksson, A. E.; Kleywegt, G. J.; Uhl, M.; Jones, T. A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 1995, 3, 265278.
  • 38
    Corper, A. L.; Sohi, M. K.; Bonagura, V. R.; Steinitz, M.; Jefferis, R.; Feinstein, A.; Beale, D.; Taussig, M. J.; Sutton, B. J. Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody-antigen interaction. Nat. Struct. Biol. 1997, 4, 374381.
  • 39
    Malhotra. R.; Wormald, M. R.; Rudd, P. M.; Fischer, P. B.; Dwek, R. A.; Sim R. B. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1995, 1, 237243.
  • 40
    Dong, X.; Storkus, W. J.; Salter, R. D. Binding and uptake of agalactosyl IgG by mannose receptor on macrophages and dendritic cells. J. Immunol. 1999, 163, 54275434.
  • 41
    Lund, J.; Takahashi, N.; Popplewell, A.; Goodall, M.; Pound, J.; Tyler, R.; King, D.; Jefferis, R. Expression and characterisation of truncated glycoforms of humanised L243 IgG1: architectural features can influence synthesis of its oligosaccharide chains and affect superoxide production triggered through human FcγRI. Eur. J. Biochem. 2000, 267, 72467257.