Kinetic Modeling of Breweryapos;s Spent Grain Autohydrolysis



Isothermal autohydrolysis treatments of breweryapos;s spent grain were used as a method for hemicellulose solubilization and xylo-oligosaccharides production. The time course of the concentrations of residual hemicelluloses (made up of xylan and arabinan) and reaction products were determined in experiments carried out at temperatures in the range from 150 to 190 °C using liquid-to-solid ratios of 8 and 10 g/g. To model the experimental findings concerning to breweryapos;s spent grain autohydrolysis several kinetic models based on sequential pseudo-homogeneous first-order reactions were tested. Xylan and arabinan were assumed to yield oligosaccharides, monosaccharides (xylose or arabinose), furfural, and other decomposition products in consecutive reaction steps. The models proposed provide a satisfactory interpretation of the hydrolytic conversion of xylan and arabinan. An additional model merging the two proposed models for xylan and arabinan degradation assuming that furfural was formed from both pentoses was developed and the results obtained are discussed. The dependence of the calculated kinetic coefficients on temperature was established using Arrhenius-type equations.