Microcarrier cultures have been shown to allow extensive cell expansion of tissue engineering relevant cells, such as chondrocytes, while maintaining their phenotype. Our aim was to investigate the in vitro three-dimensional expansion of porcine bone-marrow-derived primary mesenchymal stem cells (MSC) using commercially available Cytodex type 1, type 2, and type 3 microcarriers. In comparison, the Cytodex type 1 microcarriers showed the best results for adherence with over 80% adherent cells after 3 h of incubation, analyzed by the Poisson distribution. Different start cell densities ranging from 1 to 3 × 106 cells per 100 cm2 had only a minor influence on adhesion. The proliferation was examined on Cytodex type 1 microcarriers over a cultivation time of 28 days, which could reveal cell growth and proof of cells recolonizing freshly added microcarriers. Scanning electron microscopy displayed appropriate cell morphology and confirmed cell proliferation. After enzymatic harvest from microcarriers, the osteogenic and chondrogenic differentiation of these cells was induced and shown by relevant histochemistry, such as von Kossa and Alcian blue staining. Totaling the results, we have shown that the three-dimensional expansion of MSC on microcarriers represents a beneficial alternative to the conventional two-dimensional monolayer cultivation method.