References and Notes

  • 1
    Askenazi, M.; Driggers, E. M.; Holtzman, D. A.; Norman, T. C.; Iverson, S.; Zimmer, D. P.; Boers, M. E.; Blomquist, P. R.; Martinez, E. J.; Monreal, A. W.; Feibelman, T. P.; Mayorga, M. E.; Maxon, M. E.; Sykes, K.; Tobin, J. V.; Cordero, E.; Salama, S. R.; Trueheart, J.; Royer, J. C.; Madden, K. T. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat. Biotechnol. 2003, 21 (2), 150156.
  • 2
    Lynch, M. D.; Warnecke, T.; Gill, R. T. SCALEs: multiscale analysis of library enrichment. Nat. Methods 2007, 4 (1), 8793.
  • 3
    Winterberg, K. M.; Luecke, J.; Bruegl, A. S.; Reznikoff, W. S. Phenotypic screening of Escherichia coli K-12 Tn5 insertion libraries, using whole-genome oligonucleotide microarrays. Appl. Environ. Microbiol. 2005, 71 (1), 451459.
  • 4
    Badarinarayana, V.; Estep, P. W., 3rd; Shendure, J.; Edwards, J.; Tavazoie, S.; Lam, F.; Church, G. M. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 2001, 19 (11), 10601065.
  • 5
    Voigt, C. A.; Keasling, J. D. Programming cellular function. Nat. Chem. Biol. 2005, 1 (6), 304307.
  • 6
    Zhang, Y. X.; Perry, K.; Vinci, V. A.; Powell, K.; Stemmer, W. P.; del Cardayre, S. B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 2002, 415 (6872), 644646.
  • 7
    Patnaik, R.; Louie, S.; Gavrilovic, V.; Perry, K.; Stemmer, W. P.; Ryan, C. M.; del Cardayre, S. Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 2002, 20 (7), 707712.
  • 8
    Petri, R.; Schmidt-Dannert, C. Dealing with complexity: evolutionary engineering and genome shuffling. Curr. Opin. Biotechnol. 2004, 15 (4), 298304.
  • 9
    Vinci, V.; Byng, G. Strain Improvement by non-recombinant methods. In Manual of Industrial Microbiology and Biotechnology; Demain, A. D. J. E, Ed.; American Society for Microbiology: Washington, DC, 1998; pp 103113.
  • 10
    Butler, P. B. M; Oliver, SG, Improvement of antibiotic titers from Streptomyces bacteria by interactive continuous selection. Biotechnol. Bioeng. 1996, 49, 185196.
  • 11
    Peberdy, J. Biology of penicillins. In Biology of Industrial Microorganisms; Demain, A., Soloman, N., Eds.; Benjamin-Cummings: Menlo Park, 1985; pp 407431.
  • 12
    Rowlands, R. Industrial strain improvement:mutagenesis and random screening procedures. Enzyme Microb. Technol 1984, 6, 310.
  • 13
    Ananthalakshmy, V. K.; Gunasekaran, P. Isolation and characterization of mutants from levan-producing Zymomonas mobilis. J. Biosci. Bioeng. 1999, 87 (2), 214217.
  • 14
    Rous, C.; Snow, R.; Kunkee, R. Reduction of higher alcohols by fermentation with leucine-auxotrophic mutant of wine yeast. J. Inst. Brew. 1983, 89, 274278.
  • 15
    Wohrmann, K.; Lange, P. The polymorphism of esterases in yeast (Saccharomyces cerevisiae). J. Inst. Brew. 1980, 86, 174177.
  • 16
    An, G. H.; Bielich, J.; Auerbach, R.; Johnson, E. A. Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Bio/Technology 1991, 9 (1), 7073.
  • 17
    Watts, K. T.; Lee, P. C.; Schmidt-Dannert, C. Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. Chembiochem 2004, 5 (4), 500507.
  • 18
    Pan, L. J.; Fu, P.; Zheng, Z.; Luo, S. Z.; Jiang, S. T. Screening of a low alcohol dehydrogenase activity mutant of rhizopus oryzae and the regulation of Zn2+ and Mg2+. Weishengwu Xuebao 2006, 46 (4), 586590.
  • 19
    Sauer, U. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol. 2001, 73, 12969.
  • 20
    Bailey J. E. Towarda science of metabolic engineering. Science 1991, 252 (5013), 16681675.
  • 21
    Bailey, J. E.; Sburlati, A.; Hatzimanikatis, V.; Lee, K.; Renner, W. A.; Tsai, P. S. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol. Bioeng. 2002, 79 (5), 568579.
  • 22
    Bulter, T.; Bernstein, J. R.; Liao, J. C. A perspective of metabolic engineering strategies: moving up the systems hierarchy. Biotechnol. Bioeng. 2003, 84 (7), 815821.
  • 23
    Stephanopoulos, G.; Alper, H.; Moxley, J. Exploiting biological complexity for strain improvement through systems biology. Nat. Biotechnol. 2004, 22 (10), 12611267.
  • 24
    Antoniewicz, M. R.; Stephanopoulos, G.; Kelleher, J. K. Evaluation of regression models in metabolic physiology: predicting fluxes from isotopic data without knowledge of the pathway. Metabolomics 2006, 2 (1), 4152.
  • 25
    Hoon Yang, T.; Wittmann, C.; Heinzle, E. Respirometric 13C flux analysis-Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab. Eng. 2006, 8 (5), 432446.
  • 26
    Kleijn, R. J.; van Winden, W. A.; van Gulik, W. M.; Heijnen, J. J. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. FEBS J. 2005, 272 (19), 49704982.
  • 27
    Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2006, 2, 62.
  • 28
    Gerigk, M.; Bujnicki, R.; Ganpo-Nkwenkwa, E.; Bongaerts, J.; Sprenger, G.; Takors, R. Process control for enhanced l-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol. Bioeng. 2002, 80 (7), 746754.
  • 29
    Gerigk, M. R.; Maass, D.; Kreutzer, A.; Sprenger, G.; Bongaerts, J.; Wubbolts, M.; Takors, R. Enhanced pilot-scale fed-batch l-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst. Eng. 2002, 25 (1), 4352.
  • 30
    Ikeda, M. Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 2006, 69 (6), 615626.
  • 31
    Ikeda, M.; Ohnishi, J.; Hayashi, M.; Mitsuhashi, S. A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient l-lysine production. J. Ind. Microbiol. Biotechnol. 2006, 33 (7), 610615.
  • 32
    Ohnishi, J.; Ikeda, M. Comparisons of potentials for l-lysine production among different Corynebacterium glutamicum strains. Biosci. Biotechnol. Biochem. 2006, 70 (4), 10171020.
  • 33
    Burgess, C.; O'Connell-Motherway, M.; Sybesma, W.; Hugenholtz, J.; van Sinderen, D. Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl. Environ. Microbiol. 2004, 70 (10), 57695777.
  • 34
    Choi, J. H.; Ryu, Y. W.; Seo, J. H. Biotechnological production and applications of coenzyme Q10. Appl. Microbiol. Biotechnol. 2005, 68 (1), 915.
  • 35
    Park, Y. C.; Kim, S. J.; Choi, J. H.; Lee, W. H.; Park, K. M.; Kawamukai, M.; Ryu, Y. W.; Seo, J. H. Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol. 2005, 67 (2), 192196.
  • 36
    Schallmey, M.; Singh, A.; Ward, O. P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50 (1), 117.
  • 37
    Deng, M. D.; Grund, A. D.; Wassink, S. L.; Peng, S. S.; Nielsen, K. L.; Huckins, B. D.; Burlingame, R. P. Directed evolution and characterization of Escherichia coli glucosamine synthase. Biochimie 2006, 88 (5), 419429.
  • 38
    Deng, M. D.; Severson, D. K.; Grund, A. D.; Wassink, S. L.; Burlingame, R. P.; Berry, A.; Running, J. A.; Kunesh, C. A.; Song, L.; Jerrell, T. A.; Rosson, R. A. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab. Eng. 2005, 7 (3), 201214.
  • 39
    Zhang, F.; Song, H.; Ban, R. Knockout of the hprK gene in B. subtilis CcpA mutant and its influence on riboflavin fermentation. Shengwu Gongcheng Xuebao 2006, 22 (4), 534538.
  • 40
    Alper, H.; Miyaoku, K.; Stephanopoulos, G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 2005, 23 (5), 612616.
  • 41
    Gokarn, R. R.; Selifonova, O. V.; Jessen, H. J.; Gort, S. J.; Selmer, T. Wolfgang, B. 3-Hydroxypropionic acid and other organic compounds. U. S. Patent 7,186,541, 2007.
  • 42
    Liao, H. H.; Gokarn, R. R.; Gort, S. J.; Jessen, H. J.; Selifonova, O. V. Alanine 2,3-aminomutase. In USPTO: USPTO Application Database, 2005.
  • 43
    Nakamura, C. E.; Whited, G. M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 2003, 14 (5), 454459.
  • 44
    Ro, D. K.; Paradise, E. M.; Ouellet, M.; Fisher, K. J.; Newman, K. L.; Ndungu, J. M.; Ho, K. A.; Eachus, R. A.; Ham, T. S.; Kirby, J.; Chang, M. C.; Withers, S. T.; Shiba, Y.; Sarpong, R.; Keasling, J. D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006, 440 (7086), 940943.
  • 45
    Dumas, B.; Brocard-Masson, C.; Assemat-Lebrun, K.; Achstetter, T. Hydrocortisone made in yeast: metabolic engineering turns a unicellular microorganism into a drug-synthesizing factory. Biotechnol. J. 2006, 1 (3), 299307.
  • 46
    Szczebara, F. M.; Chandelier, C.; Villeret, C.; Masurel, A.; Bourot, S.; Duport, C.; Blanchard, S.; Groisillier, A.; Testet, E.; Costaglioli, P.; Cauet, G.; Degryse, E.; Balbuena, D.; Winter, J.; Achstetter, T.; Spagnoli, R.; Pompon, D.; Dumas, B. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 2003, 21 (2), 143149.
  • 47
    Chemler, J. A.; Yan, Y.; Koffas, M. A. Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microb. Cell. Fact. 2006, 5, 20.
  • 48
    Cipak, A.; Hasslacher, M.; Tehlivets, O.; Collinson, E. J.; Zivkovic, M.; Matijevic, T.; Wonisch, W.; Waeg, G.; Dawes, I. W.; Zarkovic, N.; Kohlwein, S. D. Saccharomyces cerevisiae strain expressing a plant fatty acid desaturase produces polyunsaturated fatty acids and is susceptible to oxidative stress induced by lipid peroxidation. Free Radical Biol. Med. 2006, 40 (5), 897906.
  • 49
    Veen, M.; Lang, C. Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2004, 63 (6), 635646.
  • 50
    Huang, Q.; Roessner, C. A.; Croteau, R.; Scott, A. I. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem. 2001, 9 (9), 22372242.
  • 51
    Huang, K. X.; Huang, Q. L.; Wildung, M. R.; Croteau, R.; Scott, A. I. Overproduction, in Escherichia coli, of soluble taxadiene synthase, a key enzyme in the Taxol biosynthetic pathway. Protein Expression Purif. 1998, 13 (1), 9096.
  • 52
    Beekwilder, J.; Wolswinkel, R.; Jonker, H.; Hall, R.; de Vos, C. H.; Bovy, A. Production of resveratrol in recombinant microorganisms. Appl. Environ. Microbiol. 2006, 72 (8), 56705672.
  • 53
    Katsuyama, Y.; Miyahisa, I.; Funa, N.; Horinouchi, S. One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 2007, 73 (5), 11431149.
  • 54
    Yan, Y.; Kohli, A.; Koffas, M. A. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2005, 71 (9), 56105613.
  • 55
    Jiang, H.; Wood, K. V.; Morgan, J. A. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2005, 71 (6), 29622969.
  • 56
    Kaneko, M.; Hwang, E. I.; Ohnishi, Y.; Horinouchi, S. Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria. J. Ind. Microbiol. Biotechnol. 2003, 30 (8), 456461.
  • 57
    Hwang, E. I.; Kaneko, M.; Ohnishi, Y.; Horinouchi, S. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl. Environ. Microbiol. 2003, 69 (5), 26992706.
  • 58
    Adrio, J. L.; Demain, A. L. Genetic improvement of processes yielding microbial products. FEMS Microbiol. Rev. 2006, 30 (2), 187214.
  • 59
    Kao, C. M.; Katz, L.; Khosla, C. Engineered biosynthesis of a complete macrolactone in a heterologous host. Science 1994, 265 (5171), 509512.
  • 60
    Murli, S.; Kennedy, J.; Dayem, L. C.; Carney, J. R.; Kealey, J. T. Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. J. Ind. Microbiol. Biotechnol. 2003, 30 (8), 500509.
  • 61
    Li, R.; Townsend, C. A. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab. Eng. 2006, 8 (3), 240252.
  • 62
    Rodriguez, E.; Hu, Z.; Ou, S.; Volchegursky, Y.; Hutchinson, C. R.; McDaniel, R. Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains. J. Ind. Microbiol. Biotechnol. 2003, 30 (8), 480488.
  • 63
    Dauner, M.; Sonderegger, M.; Hochuli, M.; Szyperski, T.; Wuthrich, K.; Hohmann, H. P.; Sauer, U.; Bailey, J. E. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl. Environ. Microbiol. 2002, 68 (4), 17601771.
  • 64
    Szyperski, T.; Bailey, J.; Wuthrich, K. Detecting and dissecting metabolic fluxes using biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Trends Biotechnol. 1996, 14, 453459.
  • 65
    Szyperski, T.; Glaser, R. W.; Hochuli, M.; Fiaux, J.; Sauer, U.; Bailey, J. E.; Wuthrich, K. Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab. Eng. 1999, 1 (3), 189197.
  • 66
    Stoughton R. B. Applicationsof DNA microarrays in biology. Annu. Rev. Biochem. 2005, 74, 5382.
  • 67
    Oh, M. K.; Liao, J. C. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol. Prog. 2000, 16 (2), 278286.
  • 68
    Oh, M. K.; Liao, J. C. DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab. Eng. 2000, 2 (3), 201209.
  • 69
    Lynch, M. D.; Gill, R. T.; Stephanopoulos, G. Mapping phenotypic landscapes using DNA micro-arrays. Metab. Eng. 2004, 6 (3), 177185.
  • 70
    Gill, R. T.; Wildt, S.; Yang, Y. T.; Ziesman, S.; Stephanopoulos, G. Genome-wide screening for trait conferring genes using DNA microarrays. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (10), 70337038.
  • 71
    Alsaker, K. V.; Papoutsakis, E. T. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J. Bacteriol. 2005, 187 (20), 71037118.
  • 72
    Tomas, C. A.; Beamish, J.; Papoutsakis, E. T. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J. Bacteriol. 2004, 186 (7), 20062018.
  • 73
    Yamamoto, K.; Ishihama, A. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 2005, 56 (1), 215227.
  • 74
    Vijayendran, C.; Polen, T.; Wendisch, V. F.; Friehs, K.; Niehaus, K.; Flaschel, E. The plasticity of global proteome and genome expression analyzed in closely related W3110 and MG1655 strains of a well-studied model organism, Escherichia coli-K12. J. Biotechnol. 2007, 128 (4), 747761.
  • 75
    Veit, A.; Polen, T.; Wendisch, V. F. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl. Microbiol. Biotechnol. 2007, 74 (2), 406421.
  • 76
    Smeianov, V. V.; Wechter, P.; Broadbent, J. R.; Hughes, J. E.; Rodriguez, B. T.; Christensen, T. K.; Ardo, Y.; Steele, J. L. Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl. Environ. Microbiol. 2007, 73 (8), 26612672.
  • 77
    Schuller, C.; Mamnun, Y. M.; Mollapour, M.; Krapf, G.; Schuster, M.; Bauer, B. E.; Piper, P. W.; Kuchler, K. Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol. Biol. Cell 2004, 15 (2), 706720.
  • 78
    Pandey, G.; Yoshikawa, K.; Hirasawa, T.; Nagahisa, K.; Katakura, Y.; Furusawa, C.; Shimizu, H.; Shioya, S. Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: biosynthesis of amino acids. Appl. Microbiol. Biotechnol. 2007, 75 (2), 415426.
  • 79
    Kondo, J. K.; Johansen, E. Product development strategies for foods in the era of molecular biotechnology. Antonie Van Leeuwenhoek 2002, 82(1–4), 291302.
  • 80
    Kang, S. H.; Huang, J.; Lee, H. N.; Hur, Y. A.; Cohen, S. N.; Kim, E. S. Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J. Bacteriol. 2007, 189 (11), 43154319.
  • 81
    Hirasawa, T.; Yoshikawa, K.; Nakakura, Y.; Nagahisa, K.; Furusawa, C.; Katakura, Y.; Shimizu, H.; Shioya, S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotechnol. 2007, 131 (1), 3444.
  • 82
    Gonzalez, R.; Tao, H.; Purvis, J. E.; York, S. W.; Shanmugam, K. T.; Ingram, L. O. Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol. Prog. 2003, 19 (2), 612623.
  • 83
    Winterberg, K. M.; Reznikoff, W. S. Screening transposon mutant libraries using full-genome oligonucleotide microarrays. Methods Enzymol. 2007, 421, 11025.
  • 84
    Aono, R. Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes. Extremophiles 1998, 2 (3), 239248.
  • 85
    Aono, R.; Tsukagoshi, N.; Yamamoto, M. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J. Bacteriol. 1998, 180 (4), 938944.
  • 86
    White, D. G.; Goldman, J. D.; Demple, B.; Levy, S. B. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 1997, 179 (19), 61226126.
  • 87
    Ramos, J. L.; Duque, E.; Rodriguez-Herva, J. J.; Godoy, P.; Haidour, A.; Reyes, F.; Fernandez-Barrero, A. Mechanisms for solvent tolerance in bacteria. J. Biol. Chem. 1997, 272 (7), 38873890.
  • 88
    Tomas, C. A.; Welker, N. E.; Papoutsakis, E. T. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl. Environ. Microbiol. 2003, 69 (8), 49514965.
  • 89
    Harris, L. M.; Desai, R. P.; Welker, N. E.; Papoutsakis, E. T. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng. 2000, 67 (1), 111.
  • 90
    Borden, J. R.; Papoutsakis, E. T. Dynamics of genomic-library enrichment and identification of solvent-tolerance genes in Clostridium acetobutylicum. Appl. Environ. Microbiol. 2007, 73 (9), 30613068.
  • 91
    Schmeisser, C.; Steele, H.; Streit, W. R. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 2007, 75 (5), 955962.
  • 92
    Schloss, P. D.; Handelsman, J. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 2003, 14 (3), 303310.
  • 93
    Gabor, E.; Liebeton, K.; Niehaus, F.; Eck, J.; Lorenz, P. Updating the metagenomics toolbox. Biotechnol. J. 2007, 2 (2), 201206.
  • 94
    Sebat, J. L.; Colwell, F. S.; Crawford, R. L. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl. Environ. Microbiol. 2003, 69 (8), 49274934.
  • 95
    Wang, D.; Cooney, C.; Demain, A.; Dunhill, P.; Humphery, A.; Lily, M. Biosynthesis of primary metabolites. In Fermentation and Enzyme Technology; Wiley: New York, 1979; pp 1425.
  • 96
    Grabar, T. B.; Zhou, S.; Shanmugam, K. T.; Yomano, L. P.; Ingram, L. O. Methylglyoxal bypass identified as source of chiral contamination in l(+)- and d(-)-lactate fermentations by recombinant Escherichia coli. Biotechnol. Lett. 2006, 28 (19), 15271535.
  • 97
    Zhou, S.; Shanmugam, K. T.; Yomano, L. P.; Grabar, T. B.; Ingram, L. O. Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol. Lett. 2006, 28 (9), 663670.
  • 98
    Sonderegger, M.; Sauer, U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69 (4), 19901998.
  • 99
    Tyo, K. E.; Zhou, H.; Stephanopoulos, G. N. High-throughput, screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 2006, 72 (5), 34123417.
  • 100
    Wallberg, F.; Sundstrom, H.; Ledung, E.; Hewitt, C. J.; Enfors, S. O. Monitoring and quantification of inclusion body formation in Escherichia coli by multi-parameter flow cytometry. Biotechnol. Lett. 2005, 27 (13), 919926.
  • 101
    Lewis, G.; Taylor, I. W.; Nienow, A. W.; Hewitt, C. J. The application of multi-parameter flow cytometry to the study of recombinant Escherichia coli batch fermentation processes. J. Ind. Microbiol. Biotechnol. 2004, 31 (7), 311322.
  • 102
    Minas, W.; Sahar, E.; Gutnick, D. Flow cytometric screening and isolation of Escherichia coli clones which express surface antigens of the oil-degrading microorganism Acinetobacter calcoaceticus RAG-1. Arch. Microbiol. 1988, 150 (5), 432437.
  • 103
    Alper, H.; Stephanopoulos, G. Global transcription machinery engineering: A new approach for improving cellular phenotype. Metab. Eng. 2007, 9 (3), 258267.
  • 104
    Alper, H.; Moxley, J.; Nevoigt, E.; Fink, G. R.; Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314 (5805), 156511568.
  • 105
    Tatarko, M.; Romeo, T. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr. Microbiol. 2001, 43 (1), 2632.
  • 106
    Yomano, L. P.; York, S. W.; Ingram, L. O. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 1998, 20 (2), 132138.
  • 107
    Wang, Y.; Li, Y.; Pei, X.; Yu, L.; Feng, Y. Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J. Biotechnol. 2007, 129 (3), 510515.
  • 108
    Hida, H.; Yamada, T.; Yamada, Y. Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl. Microbiol. Biotechnol. 2007, 73 (6), 13871393.
  • 109
    Dai, M.; Copley, S. D. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl. Environ. Microbiol. 2004, 70 (4), 23912397.
  • 110
    Javadekar, V. S.; SivaRaman, H.; Gokhale, D. V. Industrial yeast strain improvement: construction of a highly flocculent yeast with a killer character by protoplast fusion. J. Ind. Microbiol. 1995, 15 (2), 94102.
  • 111
    Loray, M. A.; Spencer, J. F.; Spencer, D. M.; de Figueroa, L. I. Hybrids obtained by protoplast fusion with a salt-tolerant yeast. J. Ind. Microbiol. 1995, 14 (6), 508513.
  • 112
    Spencer, J. F.; Spencer, D. M.; Reynolds, N. Genetic manipulation of non-conventional yeasts by conventional and non-conventional methods. J. Basic Microbiol. 1988, 28 (5), 321333.
  • 113
    Seki, T.; Choi, E. H.; Ryu, D. Construction of killer wine yeast strain. Appl. Environ. Microbiol. 1985, 49 (5), 12111215.
  • 114
    Ohnishi, J.; Hayashi, M.; Mitsuhashi, S.; Ikeda, M. Efficient 40 degrees C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl. Microbiol. Biotechnol. 2003, 62 (1), 6975.
  • 115
    Adams, J. Microbial evolution in laboratory environments. Res. Microbiol. 2004, 155 (5), 311318.
  • 116
    Helling, R. B.; Vargas, C. N.; Adams, J. Evolution of Escherichia coli during growth in a constant environment. Genetics 1987, 116 (3), 349358.
  • 117
    Boubakri, H.; Beuf, M.; Simonet, P.; Vogel, T. M. Development of metagenomic DNA shuffling for the construction of a xenobiotic gene. Gene 2006, 375, 8794.
  • 118
    Michael, C. A.; Gillings, M. R.; Holmes, A. J.; Hughes, L.; Andrew, N. R.; Holley, M. P.; Stokes, H. W. Mobile gene cassettes: a fundamental resource for bacterial evolution. Am. Nat. 2004, 164 (1), 112.
  • 119
    Holmes, A. J.; Gillings, M. R.; Nield, B. S.; Mabbutt, B. C.; Nevalainen, K. M.; Stokes, H. W. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ. Microbiol. 2003, 5 (5), 383394.
  • 120
    Klaenhammer, T. R.; Sanozky, R. B. Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol. 1985, 131 (6), 15311541.
  • 121
    Broadbent, J. R.; Kondo, J. K. Genetic construction of nisin-producing Lactococcus lactis subsp. cremoris and analysis of a rapid method for conjugation. Appl. Environ. Microbiol. 1991, 57 (2), 517524.