SEARCH

SEARCH BY CITATION

References and Notes

  • 1
    Gillespie, D. T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 1976, 22, 403434.
  • 2
    Gillespie D. T. Exactstochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 23402361.
  • 3
    McAdams, H. H.; Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 814819.
  • 4
    Arkin, A.; Ross, J.; McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected E. Coli cells. Genetics 1998, 149, 16331648.
  • 5
    Gibson, M.; Bruck, J. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 2000, 105, 18761889.
  • 6
    Cao, Y.; Li, H.; Petzold, L. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Phys. Chem. 2004, 121 (9), 40594067.
  • 7
    McColluma, J. M.; Peterson, G. D.; Cox, C. D.; Simpson, M. L.; Samatova, N. F. The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior. J. Comput. Biol. Chem. 2005, 30, 3949.
  • 8
    Blue, J.; Beichl, I.; Sullivan, F. Faster Monte Carlo simulations. Phys. Rev. E 1995, 51, 867868.
  • 9
    Li, H.; Petzold, L. Logarithmic direct method for discrete stochastic simulation of chemically reacting systems. Technical report; Department of Computer Science, University of California: Santa Barbara, 2006. http://www.engr.ucsb.edu/_cse.
  • 10
    StochKit Team. User's Guide for StochKit. http://www.engr. ucsb.edu/_cse.
  • 11
    Li, H.; Petzold, L. Efficient parallelization of stochastic simulation algorithm for chemically reacting systems on the graphics processing unit. In preparation.
  • 12
    Yoshimi, M.; Osana, Y.; lwaoka, Y.; Funahashi, A.; Hiroi, N.; Shibata, Y.; lwanaga, N.; Kitano, H.; Amano, H. The design of a scalable stochastic biochemical simulator on FPGA. Proc. I. C. Field Programmable Technol. 2005, 139140.
  • 13
    Gillespie D. T. Approximateaccelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 2001, 115 (4), 17161733.
  • 14
    Gillespie D. T. Thechemical Langevin equation. J. Chem. Phys. 2000, 113, 297306.
  • 15
    Cao, Y.; Gillespie, D.; Petzold, L. Efficient stepsize selection for the tau-leaping method. J. Chem. Phys. 2006, 124, 044109.
  • 16
    Cao, Y.; Gillespie, D.; Petzold, L. Avoiding negative populations in explicit tau leaping. J. Chem. Phys. 2005, 123, 054104054112.
  • 17
    Rathinam, M.; Cao, Y.; Petzold, L. R.; Gillespie, D. T. Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. J. Chem. Phys. 2003.
  • 18
    Cao, Y.; Petzold, L. Trapezoidal tau-leaping formula for the stochastic simulation of biochemical systems. Proc. Found. Syst. Biol. Eng. 2005, 149152.
  • 19
    Cao, Y.; Gillespie, D.; Petzold, L. The adaptive explicit-implicit tau-leaping method with automatic tau selection. J. Chem. Phys. 2007, 126 (22), 224101224109.
  • 20
    Haseltine, E. L.; Rawlings, J. B. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 2002, 117 (15), 69596969.
  • 21
    Salis, H.; Kaznessis, Y. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 2005, 122 (5), 54103.
  • 22
    Adalsteinsson, D.; Erban, R.; Kevrekidis, I.; Elston, T. Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. J. Chem. Phys. 2006, 124 (17), 084106.
  • 23
    Chatterjee, A.; Vlachos, D. G. Multiscale spatial Monte Carlo simulations: Multigridding, computational singular perturbation, and hierarchical stochastic closures. J. Chem. Phys. 2006, 124 (6), 64110.
  • 24
    Kaznessis, Y. Multi-scale models for gene networks. Chem. Eng. Sci. 2006, 61 (3), 940.
  • 25
    Rao, C.; Arkin, A. Stochastic chemical kinetics and the quasi steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 2003, 118, 49995010.
  • 26
    Cao, Y.; Gillespie, D.; Petzold, L. The slow-scale stochastic simulation algorithm. J. Chem. Phys. 2005, 122, 014116.
  • 27
    Goutsias, J. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 2005, 122 (18), 184102.
  • 28
    Cao, Y.; Gillespie, D.; Petzold, L. Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems. J. Comp. Phys. 2005, 206 (2), 395411.
  • 29
    Samant, A.; Vlachos, D. G. Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm. J. Chem. Phys. 2005, 123.
  • 30
    Cao, Y.; Gillespie, D. T.; Petzold, L. R. Accelerated stochastic simulation of the stiff enzyme-substrate reaction. J. Chem. Phys. 2005, 123.
  • 31
    Haseltine, E. L.; Rawlings, J. B. On the origins of approximations for stochastic chemical kinetics. J. Chem. Phys. 2005, 123.
  • 32
    Liu, D. W. E.; Vanden-Eijnden, E. Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Chem. Phys. 2005, 123.
  • 33
    Salis, H.; Kaznessis, Y. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. J. Chem. Phys. 2005, 123 (21), 214106.
  • 34
    Gillespie, D.; Petzold, L.; Cao, Y. Comment on nested stochastic simulation algorithm for chemical kinetic systems with disparate rates [J. Chem. Phys. 2005, 123, 1941 07]. J. Chem. Phys. 2007, 126, 137101.
  • 35
    Ribeiro, A.; Lloyd-Price, J. SGN Sim, a Stochastic Genetic Networks Simulator. Bioinformatics 2007, 23, 777779.
  • 36
    Ramsey, S.; Orrell, D. H. Bolouri. Dizzy: Stochastic simulation of large-scale genetic regulatory networks. J. Bioinformatics Comput. Biol. 2005, 3, 415436.
  • 37
    Salis, H.; Sotiropoulos, V.; Kaznessis, Y. Multiscale Hy3S: Hybrid stochastic simulation for supercomputers. BMC Bioinformatics 2006, 7, 93.
  • 38
    Adalsteinsson, D.; McMillen, D.; Elston, T. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks. BMC Bioinformatics 2004, 5, 24.
  • 39
    Message Passing Interface (MPI) Tutorial ( http://www.llnl.gov/computing/tutorials/mpi/).
  • 40
    Mascagni, M. SPRNG: A scalable library for pseudorandom number generation. In Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, Texas, 1999.
  • 41
    Mascagni, M.; Srinivasan, A. SPRNG: A scalable library for pseudorandom number generation. ACM Trans. Math. Software 2000, 26, 436461.
  • 42
    Brown, B.; Lovato, W. J.; Russell, K. RANLIB.C Library of C Routines for Random Number Generation. M.D. Anderson Cancer Center, The University of Texas: Houston, 1991.
  • 43
    Hucka, M.; Finney, A.; Sauro, H. M.; Bolouri, H.; Doyle, J. C.; Kitano, H. The Systems Biology markup Language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19 (4), 524531.
  • 44
    Cao, Y.; Petzold, L. Accuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systems. J. Comput. Phys. 2006, 212, 624.
  • 45
    Schlögl, F. On thermodynamics near a steady state. Zeitschirft Phys. 1971, 248, 446458.
  • 46
    Gillespie, D. Markov Processes: An Introduction for Physical Scientists; Academic Press: New York, 1992.
  • 47
    Rathinam, M.; Petzold, L.; Cao, Y.; Gillespie, D. Consistency and stability of tau leaping schemes for chemical reaction systems. SIAM Multiscale Model. 2005, 4, 867895.
  • 48
    Cao, Y.; Petzold, L.; Rathinam, M.; Gillespie, D. The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. J. Chem. Phys. 2004, 121 (24), 1216912178.
  • 49
    Gunawan, R.; Cao, Y.; Petzold, L.; Doyle, F. J. , III. Sensitivity analysis of discrete stochastic systems. J. Biophys. 2005, 88, 25302540.
  • 50
    Kim, D.; Debusschere, B. J.; Najm, H. N. Spectral methods for parametric sensitivity in stochastic dynamical systems. J. Biophys. 2007, 92, 379393.
  • 51
    Kurata, H.; El-Samad, H.; Yi, T.; Khammash, M.; Doyle, J. Feedback regulation of the heat shock response in E. Coli. Proceedings of the 40th IEEE conference on Decision and Control, 2001, 1, 837842.
  • 52
    Kurata, H.; Khammash, M.; Doyle, J. Stochastic analysis of the heat shock response in E. Coli. In 3rd International Conference on Systems Biology; Stockholm, Sweden, 2002.
  • 53
    Tyson, J. J.; Novak, B. Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 2001.
  • 54
    Vass, M.; Allen, N.; Shaffer, C. A.; Ramakrishnan, N.; Watson, L. T.; Tyson, J. J. The Jigcell model builder and run manager. Bioinformatics 2004, 18, 36803681.
  • 55
    Tyson, J. J. Personal communication.
  • 56
    Cao, Y.; Petzold, L. Slow scale tau-leaping method. Submitted.