SEARCH

SEARCH BY CITATION

References and Notes

  • 1
    Bridgwater, A. V.; Toft, A. J.; Brammer, J. G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable Sustainable Energy Rev. 2002, 6 (3), 181248.
  • 2
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (43), 1572915735.
  • 3
    UN World Energy Assessment Report: Energy and the Challenge of Sustainability; United Nations Development Program; United Nations: New York, 2003.
  • 4
    Richmond, A. Microalgal biotechnology at the turn of the millennium: A personal view. J. Appl. Phycol. 2000, 12 (3), 441451.
  • 5
    Huntley, M. E.; Redalje, D. G. CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation Adaptation Strategies Global Change 2007, 12 (4), 573608.
  • 6
    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. Discuss. 2007, 7 (4), 1119111205.
  • 7
    Nakamura, D. N. Journally speaking: The mass appeal of biomass. Oil Gas J. 2006, 104 (45), 15.
  • 8
    Demirbas, A. Oily products from mosses and algae via pyrolysis. Energy Sources, A 2006, 28 (10), 933940.
  • 9
    Barkley, W. C. W.; Lewin, R. A.; Cheng, L. In Development of Microalgal Systems for the Production of Liquid Fuels, Société pour l'Algologie Appliquée, Villeneuve d'Ascq, France, 1987; Sadler, T., Ed.; Elsevier Applied Science: Villeneuve d'Ascq, France 1987.
  • 10
    De la Noue, J.; De Pauw, N. The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotechnol. Adv. 1988, 6, 725770.
  • 11
    Demirbas, A. Recent developments in biodiesel fuels. Int. J. Green Energy 2007, 4 (1), 1526.
  • 12
    Meher, L. C.; Vidya, Sagar D.; Naik, S. N. Technical aspects of biodiesel production by transesterification−A review. Renewable Sustainable Energy Rev. 2006, 10 (3), 248268.
  • 13
    Marchetti, J. M.; Miguel, V. U.; Errazu, A. F. Possible methods for biodiesel production. Renewable Sustainable Energy Rev. 2007, 11 (6), 13001311.
  • 14
    Dube, M. A.; Tremblay, A. Y.; Liu, J. Biodiesel production using a membrane reactor. Bioresour. Technol. 2007, 98 (3), 639647.
  • 15
    Kondili, E. M.; Kaldellis, J. K. Biofuel implementation in East Europe: Current status and future prospects. Renewable Sustainable Energy Rev. 2007, 11 (9), 21372151.
  • 16
    Miao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97 (6), 841846.
  • 17
    Tornabene, T. G.; Holzer, G.; Lien, S.; Burris, N. Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb. Technol. 1983, 5 (6), 435440.
  • 18
    Xu, H.; Miao, X.; Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006, 126 (4), 499507.
  • 19
    Sheehan, J. et al. A look back at the US Department of Energy's aquous species program: biodiesel from Algae; NREL/TP-580-24190; The National Renewable Energy Laboratory, U.S. Department of Energy, July 1998.
  • 20
    Energy Use Data Handbook, 1990 and 1998 to 2004; Energy Publications, Office of Energy Efficiency, Natural Resources Canada: Ottawa, 2006.
  • 21
    Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25 (3), 294306.
  • 22
    Seefeldt, L. C. Utah group plans to make biodiesel from algae. Ind. Bioprocess. 2007, 29 (3), 56.
  • 23
    Lv, P.; Yuan, Z.; Wu, C.; Ma, L.; Chen, Y.; Tsubaki, N. Bio-syngas production from biomass catalytic gasification. Energy Convers. Manage. 2007, 48 (4), 11321139.
  • 24
    Iliopoulou, E. F.; Antonakou, E. V.; Karakoulia, S. A.; Vasalos, I.A.; Lappas, A. A.; Triantafyllidis, K. S. Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chem. Eng. J. 2007, 134 (1–3), 5157.
  • 25
    Ji-lu, Z. Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. J. Anal. Appl. Pyrolysis 2007, 80 (1), 3035.
  • 26
    Prins, M. J.; Ptasinski, K. J.; Janssen, F. J. J. G. More efficient biomass gasification via torrefaction. Energy 2006, 31 (15), 34583470.
  • 27
    Zwart, R. W. R.; Boerrigter, H.; van der Drift, A. The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer-Tropsch products. Energy Fuels 2006, 20 (5), 21922197.
  • 28
    Meier, D.; Faix, O. State of the art of applied fast pyrolysis of lignocellulosic materials−A review. Bioresour. Technol. 1999, 68 (1), 7177.
  • 29
    Pakdel, H.; Roy, C. Hydrocarbon content of liquid products and tar from pyrolysis and gasification of wood. Energy Fuels 1991, 5 (3), 427436.
  • 30
    Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage. 2001, 42 (11), 13571378.
  • 31
    Czernik, S.; Bridgwater, A. V. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 2004, 18 (2), 590598.
  • 32
    Bridgwater, A. V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem. 1999, 30 (12), 14791493.
  • 33
    Chiaramonti, D.; Oasmaa, A.; Solantausta, Y. Power generation using fast pyrolysis liquids from biomass. Renewable Sustainable Energy Rev. 2007, 11 (6), 10561086.
  • 34
    Petrus, L.; Noordermeer, M. A. Biomass to biofuels, a chemical perspective. Green Chem. 2006, 8 (10), 861867.
  • 35
    Wang, Z.; Pan, Y.; Dong, T.; Zhu, X.; Kan, T.; Yuan, L.; Torimoto, Y.; Sadakata, M.; Li, Q. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O−based catalysts. Appl. Catal., A 2007, 320, 2434.
  • 36
    Demirbaş, A.; industry, B. r. f. e. a. c., Biomass resources for energy and chemical industry. Energy, Educ., Sci. Technol. 2000, 5, 2145.
  • 37
    Miao, X.; Wu, Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 2004, 110 (1), 8593.
  • 38
    Miao, X.; Wu, Q.; Yang, C. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis 2004, 71 (2), 855863.
  • 39
    Kapdan, I. K.; Kargi, F. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 2006, 38 (5), 569582.
  • 40
    Ran, C. Q.; Chen, Z. A.; Zhang, W.; Yu, X. J.; Jin, M. F. Characterization of photobiological hydrogen production by several marine green algae. Wuhan Ligong Daxue Xuebao 2006, 28 (SUPPL. 2), 258263.
  • 41
    Chang, E. H.; Yang, S. S. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot. Bull. Acad. Sin. 2003, 44 (1), 4352.
  • 42
    Hsueh, H. T.; Chu, H.; Yu, S. T. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 2007, 66 (5), 878886.
  • 43
    Doucha, J.; Straka, F.; Livansky, K. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 2005, 17 (5), 403412.
  • 44
    Lee, J. N.; Lee, J. S.; Shin, C. S.; Park, S. C.; Kim, S. W. Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas. Appl. Biochem. Biotechnol., A 2000, 84–86, 329342.
  • 45
    Vunjak-Novakovic, G.; Kim, Y.; Wu, X.; Berzin, I.; Merchuk, J. C. Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies. Ind. Eng. Chem. Res. 2005, 44 (16), 61546163.
  • 46
    Mallick, N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. BioMetals 2002, 15 (4), 377390.
  • 47
    Aslan, S.; Kapdan, I. K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006, 28 (1), 6470.
  • 48
    Hernandez, J. P.; De-Bashan, L. E.; Bashan, Y. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella, spp. co-immobilized with Azospirillum brasilense. Enzyme Microb. Technol. 2006, 38 (1–2), 190198.
  • 49
    Abdel, Hameed M. S. Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. Afr. J. Biotechnol. 2007, 6 (10), 11851191.
  • 50
    Lebeau, T.; Robert, J. M. Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl. Microbiol. Biotechnol. 2003, 60 (6), 624632.
  • 51
    Galvez-Cloutier, R.; Leroueil, S.; Allier, D.; Locat, J.; Arsenault, S. A combined method: Precipitation and capping, to attenuate eutrophication in Canadian lakes. J. ASTM Int. 2006, 3 (6).
  • 52
    Muñoz, R.; Guieysse, B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40 (15), 27992815.
  • 53
    Tamer, E.; Amin, M. A.; Ossama, E. T.; Bo, M.; Benoit, G. Biological treatment of industrial wastes in a photobioreactor. Water Sci. Technol. 2006, 53 (11), 117125.
  • 54
    Blanco, A. M.; Moreno, J.; Del, Campo J. A.; Rivas, J.; Guerrero, M. G. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl. Microbiol. Biotechnol. 2007, 73 (6), 12591266.
  • 55
    Wu, X.; Merchuk, J. C. Simulation of algae growth in a bench scale internal loop airlift reactor. Chem. Eng. Sci. 2004, 59 (14), 28992912.
  • 56
    Janssen, M.; Slenders, P.; Tramper, J.; Mur, L. R.; Wijffels, R. H. Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb. Technol. 2001, 29 (4–5), 298305.
  • 57
    Huang, J. C.; Chen, F.; Sandmann, G. Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J. Biotechnol. 2006, 122 (2), 176185.
  • 58
    Laws, E. A.; Berning, J. L. A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: Implications for use of power plant stack gases. Biotechnol. Bioeng. 1991, 37 (10), 936947.
  • 59
    Kamm, B. Production of platform chemicals and synthesis gas from biomass. Angew. Chem., Int. Ed. 2007, 46 (27), 50565058.
  • 60
    Ltd, A. B. C. Company news: Biodiesel from algae makes debut. Fuels Lubes Int. 2007, 13 (2), 28.
  • 61
    Mohan, D.; Pittman, Jr, C. U.; Steele, P. H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20 (3), 848889.
  • 62
    Oh, H. M.; Choi, A.; Mheen, T. I. High-value materials from microalgae. Korean J. Microbiol. Biotechnol. 2003, 31 (2), 95102.
  • 63
    Jiang, F. C. a. Y. Algae and Their Biotechnological Potential. Kluwer Academic Publishers: Dordrecht/Boston/London, 2000.
  • 64
    Del, Campo J. A.; Garcia-Gonzalez, M.; Guerrero, M. G. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2007, 74 (6), 11631174.
  • 65
    He, H. Z.; Li, H. B.; Chen, F. Determination of vitamin B1 in seawater and microalgal fermentation media by high-performance liquid chromatography with fluorescence detection. Anal. Bioanal. Chem. 2005, 383 (5), 875879.
  • 66
    Ip, P. F.; Chen, F. Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem. 2005, 40 (11), 34913496.
  • 67
    Wen, Z. Y.; Chen, F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 2003, 21 (4), 273294.
  • 68
    Jiang, Y.; Fan, K. W.; Wong, R. T. Y.; Chen, F. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 2004, 52 (5), 11961200.
  • 69
    Shi, X. M.; Jiang, Y.; Chen, F. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Prog. 2002, 18 (4), 723727.
  • 70
    Lee, Y. K. Microalgal mass culture systems and methods: Their limitation and potential. J. Appl. Phycol. 2001, 13 (4), 307315.
  • 71
    Pulz, O. Photobioreactors: Production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 2001, 57 (3), 287293.
  • 72
    Carvalho, A. P.; Meireles, L. A.; Malcata, F. X. Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Prog. 2006, 22 (6), 14901506.
  • 73
    Chaumont, D. Biotechnology of algal biomass production: A review of systems for outdoor mass culture. J. Appl. Phycol. 1993, 5 (6), 593604.
  • 74
    Janssen, M.; Tramper, J.; Mur, L. R.; Wijffels, R. H. Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol. Bioeng. 2003, 81 (2), 193210.
  • 75
    Knuckey, R. M.; Brown, M. R.; Robert, R.; Frampton, D. M. F. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult. Eng. 2006, 35 (3), 300313.
  • 76
    Divakaran, R.; Pillai, V. N. S. Flocculation of algae using chitosan. J. Appl. Phycol. 2002, 14 (5), 419422.
  • 77
    Molina Grima, E.; Belarbi, E. H.; Acien Fernandez, F. G.; Robles Medina, A.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20 (7–8), 491515.
  • 78
    Olaizola, M. Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomol. Eng. 2003, 20 (4–6), 459466.
  • 79
    Bosma, R.; Van Spronsen, W. A.; Tramper, J.; Wijffels, R. H. Ultrasound, a new separation technique to harvest microalgae. J. Appl. Phycol. 2003, 15 (2–3), 143153.
  • 80
    Millamena, O. M.; Aujero, E. J.; Borlongan, I. G. Techniques on algae harvesting and preservation for use in culture and as larval food. Aquacult. Eng. 1990, 9 (5), 295304.
  • 81
    Prakash, J.; Pushparaj, B.; Carlozzi, P.; Torzillo, G.; Montaini, E. Materassi, R. Microalgal biomass drying by a simple solar device. Int. J. Solar Energy 1997, 18 (4), 303311.
  • 82
    Desmorieux, H.; Decaen, N. Convective drying of Spirulina in thin layer. J. Food Eng. 2006, 77 (1), 6470.
  • 83
    Leach, G.; Oliveira, G.; Morais, R. Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J. Ind. Microbiol. Biotechnol. 1998, 20 (2), 8285.
  • 84
    Nindo, C. I.; Tang, J. Refractance window dehydration technology: A novel contact drying method. Drying Technol. 2007, 25 (1), 3748.
  • 85
    Furuki, T.; Maeda, S.; Imajo, S.; Hiroi, T.; Amaya, T.; Hirokawa, T.; Ito, K.; Nozawa, H. Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. J. Appl. Phycol. 2003, 15 (4), 319324.
  • 86
    Borowitzka, L. J. Development of Western Biotechnology's algal β-carotene plant. Bioresour. Technol. 1991, 38 (2–3), 251252.
  • 87
    Cardozo, K. H. M.; Guaratini, T.; Barros, M. P.; Falcao, V. R.; Tonon, A. P.; Lopes, N. P.; Campos, S.; Torres, M. A.; Souza, A.O.; Colepicolo, P.; Pinto, E. Metabolites from algae with economical impact. Comp.e Biochem. Physiol., Part C: Toxicol. Pharmacol. 2007, 146 (1–2 SPEC. ISS.), 6078.
  • 88
    Valencia, I.; Ansorena, D.; Astiasaran, I. Development of dry fermented sausages rich in docosahexaenoic acid with oil from the microalgae Schizochytrium sp.: Influence on nutritional properties, sensorial quality and oxidation stability. Food Chem. 2007, 104 (3), 10871096.
  • 89
    Bigogno, C.; Khozin-Goldberg, I.; Boussiba, S.; Vonshak, A.; Cohen, Z. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 2002, 60 (5), 497503.
  • 90
    Baker, E. R.; McLaughlin, J. J. A.; Hutner, S. H. Water-soluble vitamins in cells and spent culture supernatants of Poteriochromonas stipitata, Euglena gracilis, and Tetrahymena thermophila. Arch. Microbiol. 1981, 129 (4), 310313.
  • 91
    Survase, S. A.; Bajaj, I. B.; Singhal, R. S. Biotechnological production of vitamins. Food Technol. Biotechnol. 2006, 44 (3), 381396.
  • 92
    Bremus, C.; Herrmann, U.; Bringer-Meyer, S.; Sahm, H. The use of microorganisms in l-ascorbic acid production. J. Biotechnol. 2006, 124 (1), 196205.
  • 93
    Running, J. A.; Severson, D. K.; Schneider, K. J. Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. J. Ind. Microbiol. Biotechnol. 2002, 29 (2), 9398.