SEARCH

SEARCH BY CITATION

References and Notes

  • 1
    Darrington, R. T.; Anderson, B. D. The role of intramolecular nucleophilic catalysis and the effects of self-association on the deamidation of human insulin at low pH. Pharm. Res. 1994, 11, 784793.
  • 2
    Bhatt, N. P.; Patel, K.; Borchardt, R. T. Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone. Pharm. Res. 1990, 7, 593599.
  • 3
    Oliyai, C.; Borchardt, R. T. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Pharm. Res. 1993, 10, 95102.
  • 4
    Powell, M. F. Peptide stability in aqueous parenteral formulations: Prediction of chemical stability based on primary structure. In Formulation and Delivery of Proteins and Peptides; Cleland, J. L.; Langer, R., Eds.; American Chemical Society: Washington, DC., 1994; pp 100117.
  • 5
    Lura, R.; Schirch, V. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues. Biochemistry 1988, 27, 76717677.
  • 6
    Geiger, T.; Clarke, S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides: Suc-cinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 1987, 262, 785794.
  • 7
    Oliyai, C.; Patel, J. P.; Carr, L.; Borchardt, R. T. Chemical pathways of peptide degradation. VII. Solid state chemical instability of an aspartyl residue in a model hexapeptide. Pharm. Res. 1994, 11, 901908.
  • 8
    Shahrohk, Z.; Eberlein, G.; Buckley, D.; Paranandi, M. V.; Aswad, D. W.; Stratton, P.; Mischak, R.; Wang, Y. J. Major degradation products of basic fibroblast growth factor: Detection of succinimide and iso-aspartate in place of aspartate. Pharm. Res. 1994, 11, 936944.
  • 9
    Darrington, R. T.; Anderson, B. D. Evidence for a common intermediate in insulin deamidation and covalent dimer formation: Effects of pH and aniline trapping in dilute acidic solutions. J. Pharm. Sci. 1995, 84, 275282.
  • 10
    Brange, J.; Havelund, S.; Hougaard, P. Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations. Pharm. Res. 1992, 9, 727734.
  • 11
    Brange, J. Chemical stability of insulin 4. Mechanisms and kinetics of chemical transformation in pharmaceutical formulation. Acta Pharm. Nord. 1992, 4, 209222.
  • 12
    Costantino, H. R.; Langer, R.; Klibanov, A. M. Moisture-induced aggregation of lyophilized insulin. Pharm. Res. 1994, 11, 2129.
  • 13
    Wang, Y.-C. J.; Hanson, M. A. Parenteral formulations of proteins and peptides; stability and stabilizers. J. Parenteral Sci. Technol. 1988, 42, S1S24.
  • 14
    Yoshioka, S.; Aso, Y.; Izutsu, K.; Terao, T. Aggregates formed during storage of β-galactosidase in solution and in the freeze-dried state. Pharm. Res. 1993, 10, 687691.
  • 15
    Gu, L.; Fausnaugh, J. Stability and characterization of human interleukin-1β. In Stability and Characterization of Protein and Peptide Drugs; Wang, Y. J.; Pearlman, R., Eds.; Plenum: New York, 1993; Vol. 5, pp 221248.
  • 16
    Costantino, H. R.; Langer, R.; Klibanov, A. M. Aggregation of a lyophilized pharmaceutical protein, recombinant human albumin: effect of moisture and stabilization by excipients. Biotechnology 1995, 13, 493496.
  • 17
    Strickley, R. G.; Anderson, B. D. Solid-state stability of human insulin I. Mechanism and the effect of water on the kinetics of degradation of lyophiles from pH 2-5 solutions. Pharm. Res. 1996, 13, 11421153.
  • 18
    Darrington, R. T.; Anderson, B. D. Effects of insulin concentration and self-association of its A-21 cyclic anhydride intermediate to desamido insulin and covalent dimer. Pharm. Res. 1995, 12, 10771084.
  • 19
    Hageman, M. J.; Bauer, J. M.; Possert, P. L.; Darrington, R. T. Preformulation studies oriented toward sustained delivery of recombinant somatotropins. J. Agric. Food Chem. 1992, 40, 348355.
  • 20
    Brange, J.; Hallund, O.; Sorensen, E. Chemical stability of insulin 5. Isolation, characterization and identification of insulin transformation products. Acta Pharm. Nord. 1992, 4, 223232.
  • 21
    Townsend, M. W.; DeLuca, P. P. Nature of aggregates formed during storage of freeze-dried ribonuclease A. J. Pharm. Sci. 1991, 80, 6366.
  • 22
    Eckhardt, B. M.; Oeswein, J. Q.; Bewley, T. A. Effect of freezing on aggregation of human growth hormone. Pharm. Res. 1991, 8, 13601364.
  • 23
    Gu, L. C.; Erdos, E. A.; Chiang, H.-S.; Calderwood, T.; Tsai, K.; Visor, G. C.; Duffy, J.; Hsu, W.-C.; Foster, L. C. Stability of interleukin 1β (IL-1β) in aqueous solution: analytical methods, kinetics, products, and solution formulation implications. Pharm. Res. 1991, 8, 485490.
  • 24
    Robbins, D. C.; Cooper, S. M.; Fineberg, S. E.; Mead, P. M. Antibodies to covalent aggregates of insulin in blood of insulin-using diabetic patients. Diabetes 1987, 36, 838841.
  • 25
    Wang, Y. J.; Pearlman, R. Stability and Characterization of Protein and Peptide Drugs, Case Histories; Wang, Y. J.; Pearl-man, R., Eds.; Plenum: New York and London, 1993; Vol. 5.
  • 26
    Pikal, M. J. Freeze-drying of proteins: Process, formulation and stability. In Formulation and Delivery of Proteins and Peptides; Cleland, J. L.; Langer, R., Eds.; American Chemical Society: Washington, D.C., 1994; pp 120133.
  • 27
    Pearlman, R.; Nguyen, T. H. Pharmaceutics of protein drugs. J. Pharm. Pharmacol. 1992, 44 (Suppl.), 178185.
  • 28
    Manning, M. C.; Patel, K.; Borchardt, R. T. Stability of protein pharmaceuticals. Pharm. Res. 1989, 6, 903918.
  • 29
    Pikal, M. J.; Dellerman, K. M.; Roy, M. L.; Riggin, R. M. The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm. Res. 1991, 8, 427436.
  • 30
    Pearlman, R.; Bewley, T. A. Stability and characterization of human growth hormone. In Stability and Characterization of Protein and Peptide Drugs: Case Histories; Wang, Y. J.; Pearl-man, R., Eds.; Plenum: New York, 1993; Vol. 5, pp 158.
  • 31
    Hageman, M. J. Water sorption and solid state stability of proteins. In Stability of Protein Pharmaceuticals: Chemical and Physical Pathways of Protein Degradation; Ahern, T. J.; Manning, M. C., Eds.; Plenum: New York, 1992.
  • 32
    Davio, S. R.; Hageman, M. J. Characterization and formulation considerations for recombinantly derived bovine somatotropin. In Stability and Characterization of Protein and Peptide Drugs Case Histories; Wang, Y. J.; Pearlman, R., Eds.; Plenum: New York, 1993; Vol. 5, pp 5989.
  • 33
    Nguyen, T. H.; Ward, C. Stability characterization and formulation development of alteplase, a recombinant tissue plasminogen activator. In Stability and Characterization of Protein and Peptide Drugs; Wang, Y. J.; Pearlman, R., Eds.; Plenum: New York, 1993; Vol. 5, pp 91134.
  • 34
    Oksanen, C. A.; Zografi, G. The relationship between the glass transition temperature and water vapor absorption by poly-(vinylpyrrolidone). Pharm. Res. 1990, 7, 654657.
  • 35
    Oksanen, C. A.; Zografi, G. Molecular mobility in mixtures of absorbed water and solid poly(vinylpyrrolidone). Pharm. Res. 1993, 10, 791799.
  • 36
    Cohen, M. H.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959, 31, 11641169.
  • 37
    Franks, F.; Hatley, R. H. M.; Mathias, S. F. Materials science and the production of shelf-stable biologicals. Pharm. Tech. 1992, March, 3250.
  • 38
    Rupley, J. A.; Yang, P.-H.; Tollin, G. Thermodynamics and related studies of water interacting with proteins. In Water in Polymers; Rowland, S. P., Ed.; American Chemical Society: Washington, D.C., 1980; Vol. 127, pp 11134.
  • 39
    Hancock, B. C.; Zografi, G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res. 1994, 11, 471477.
  • 40
    Hancock, B. C.; Shamblin, S. L.; Zografi, G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm. Res. 1995, 12, 799806.
  • 41
    Slade, L.; Levine, H. Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutrit. 1991, 30, 115360.
  • 42
    Gibbs, J. H.; DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 1958, 28, 373383.
  • 43
    Kovas, A. La contraction isotherme du volume des polymeres amorphes. J. Polym. Sci. 1958, 30, 131147.
  • 44
    Kauzmann, W. The nature of the glassy state and the behaviour of liquids at low temperatures. Chem. Rev. 1948, 43, 219256.
  • 45
    Barlow, A. J.; Lamb, J.; Matheson, A. J. Viscous behaviour of supercooled liquids. Proc. Roy. Soc., London Series A 1966, 292, 322342.
  • 46
    Shalaev, E. Y.; Zografi, G. How does residual water affect the solid-state degradation of drugs in the amorphous state? J. Pharm. Sci. 1996, 85, 11371141.
  • 47
    Careri, G.; Gratton, E.; Yang, P.-H.; Rupley, J. A. Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature 1980, 284, 572573.
  • 48
    Poole, P. L.; Finney, J. L. Sequential hydration of dry proteins: A direct difference IR investigation of sequence homologs lysozyme and R-lactalbumin. Biopolymers 1984, 23, 16471666.
  • 49
    Chan, Y.-K.; Oda, G.; Kaplan, H. Chemical properties of the functional groups of insulin. Biochem. J. 1981, 193, 419425.
  • 50
    Sheffer, M. G.; Kaplan, H. nusual chemical properties of the amino groups of insulin: Implications for structure-function relationship. Can. J. Biochem. 1979, 57, 489496.
  • 51
    Baudys, M.; Uchio, T.; Mix, D.; Wilson, D.; Kim, S. W. Physical stabilization of insulin by glycosylation. J. Pharm. Sci. 1995, 84, 2833.
  • 52
    Turnbull, D.; Cohen, M. H. On the free-volume model of the liquid-glass transition. J. Chem. Phys. 1970, 52, 30383041.
  • 53
    Stein, W. D.; Nir, S. On the mass dependence of diffusion within biological membranes and polymers. J. Membr. Biol. 1971, 5, 246249.
  • 54
    Lieb, W. R.; Stein, W. D. Simple diffusion across the membrane bilayer. In Transport and Diffusion across Cell Membranes; Stein, W. D., Ed.; Academic: Orlando, FL, 1986; pp 69112.
  • 55
    Bell, L. N.; Hageman, M. J. Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: aspartame degradation. J. Agric. Food Chem. 1994, 40, 873879.
  • 56
    Barbour, N. P.; Paborji, M.; Alexander, T. C.; Coppola, W. P.; Bogardus, J. B. Stabilization of chimeric BR96-doxorubicin immunoconjugate. Pharm. Res. 1995, 12, 215222.
  • 57
    Carpenter, J. F.; Martin, B.; Loomis, S. H.; Crowe, J. H. Long-term preservation of dried phosphofructokinase by sugars and sugar/zinc mixtures. Cryobiology 1988, 25, 372376.
  • 58
    Chang, B. S.; Randall, C. S.; Lee, Y. S. Stabilization of lyophilized porcine pancreatic elastase. Pharm. Res. 1993, 10, 14781483.
  • 59
    Izutsu, K.; Yoshioka, S.; Kojima, S. Physical stability and protein stability of freeze-dried cakes during storage at elevated temperatures. Pharm. Res. 1994, 11, 995999.
  • 60
    Colaco, C. A. L. S.; Smith, C. J. S.; Sen, S.; Roser, D. H.; Newman, Y.; Ring, S.; Roser, B. J. Chemistry of protein stabilization by trehalose. In Formulation and Delivery of Proteins and Peptides; Cleland, J. L.; Langer, R., Eds.; American Chemical Society: Washington, DC., 1994; pp 222240.