SEARCH

SEARCH BY CITATION

References

  • Adamsen, A. P. S., G. M. King, Methane consumption in temperate and subarctic forest soils: Rates, vertical zonation, and responses to water and nitrogen, Appl. Environ. Microbiol., 59, 485490, 1993.
  • Aselmann, I., Global-scale extrapolation: A critical assessment, Exchange of Trace Gases Between Terrestrial Ecosystems and the AtmosphereM. O. Andreae, D. S. Schimel, 119133, John Wiley, New York, 1989.
  • Atlas, R. M., R. Bartha, Microbial Ecology: Fundamentals and Applications, 533, Benjamin-Cummings, Redwood City, Calif., 1987.
  • Bender, M., R. Conrad, Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios, FEMS Microbiol. Ecol., 101, 261270, 1992.
  • Bender, M., R. Conrad, Kinetics of methane oxidation in oxic soils, Chemosphere, 26, 687696, 1993.
  • Bender, M., R. Conrad, Methane oxidation activity in various soils and fleshwater sediments: Occurrence, characteristics, vertical profiles, and distributions on grain size fractions, J. Geophys. Res., 99, 1653116540, 1994.
  • Boeckx, P., O. vanCleemput, Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature and nitrogen-turnover, J. Environ. Qual., 25, 178183, 1996.
  • Boeckx, P., O. vanCleemput, I. Villaralvo, Methane emission from a landfill and the methane oxidizing capacity of its covering soil, Soil Biol. Biochem., 28, 13971405, 1996.
  • Born, M., H. Dörr, I. Levin, Methane consumption in aerated soils of the temperate zone, Tellus Ser. B, 42, 28, 1990.
  • Bouwman, A. F., I. Fung, E. Matthews, J. John, Global analysis of the potential for N2O production in natural soils, Global Biogeochem. Cycles, 7, 557597, 1993.
  • Cao, M., S. Marshall, K. Gregson, Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model, J. Geophys. Res., 101, 1439914414, 1996a.
  • Cao, M., K. Gregson, S. Marshall, J. B. Dent, O. W. Heal, Global methane emissions from rice paddies, Chemosphere, 5, 879897, 1996b.
  • Castro, M. S., P. A. Steudler, J. M. Melillo, J. D. Aber, R. D. Bowden, Factors controlling atmospheric methane consumption by temperate forest soils, Global Biogeochem. Cycles, 9, 110, 1995.
  • Conrad, R., Soil microbial processes involved in production and consumption of atmospheric trace gases, Adv. Microb. Ecol., 14, 207250, 1995.
  • Crill, P. M., Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil, Global Biogeochem. Cycles, 5, 319334, 1991.
  • Crill, P. M., P. J. Martikainen, H. Hykanen, J. Silvola, Temperature and N fertilization effects on methane oxidation in a drained peatland soil, Soil Biol. Biochem., 26, 13311339, 1994.
  • Cussler, E. L., Diffusion: Mass transfer in fluid systems, Cambridge Univ. Press, New York, 1984.
  • Davidson, E. A., S. E. Trumbore, Gas diffusivity and production of CO2 in deep soils of the eastern Amazon, Tellus Ser. B, 47, 550565, 1995.
  • Dobbie, K. E., K. A. Smith, A. Prieme, S. Christensen, A. Degorska, P. Orlanski, Effect of land use on the rate of methane uptake by surface soils in Northern Europe, Atmos. Environ., 30, 10051011, 1996.
  • Dörr, H., L. Katruff, I. Levin, Soil texture parameterization of the methane uptake in aerated soils, Chemosphere, 26, 697713, 1993.
  • Dunfield, P., R. Knowles, R. Dumont, T. R. Moore, Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH, Soil Biol. Biochem., 25, 321326, 1993.
  • Farrell, D. A., E. L. Greacen, C. G. Gurr, Vapour transport in soil due to air turbulence, Soil Sci., 102, 305313, 1966.
  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser, Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 1303313065, 1991.
  • Goldman, M. B., P. M. Grofman, R. V. Pouyat, M. J. McDonnell, S. T. Pickett, CH4 uptake and N availability in forest soils along an urban to rural gradient, Soil Biol. Biochem., 27, 281286, 1995.
  • Hanson, R. S., Ecology and diversity of methylotrophic organisms, Adv. Appl. Microbiol., 26, 339, 1980.
  • Harriss, R. C., D. I. Sebacher, Methane flux in the Great Dismal Swamp, Nature, 297, 673674, 1982.
  • , Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission ScenariosJ. T. Houghton, L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris, K. Maskell, 339, Cambridge Univ. Press, New York, 1995.
  • , Climate Change 1995: The Science of Climate ChangeJ. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell, 572, Cambridge Univ. Press, New York, 1996.
  • Hütsch, B. W., Methane oxidation in soils of two long-term fertilization experiments in Germany, Soil Biol. Biochem., 28, 773782, 1996.
  • Hütsch, B. W., C. P. Webster, D. S. Powlson, Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk Wheat Experiment, Soil Biol. Biochem., 25, 13071315, 1993.
  • Hütsch, B. W., C. P. Webster, D. S. Powlson, Methane oxidation in soil as affected by land use, soil pH and N fertilization, Soil Biol. Biochem., 26, 16131622, 1994.
  • Keller, M., E. Veldkamp, A. M. Weltz, W. A. Reiners, Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica, Nature, 365, 244246, 1993.
  • King, G. M., A. P. S. Adamsen, Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra, Appl. Environ. Microbiol., 58, 27582763, 1992.
  • King, G. M., S. Schnell, Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption, Nature, 370, 282284, 1994.
  • Koschorreck, M., R. Conrad, Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores and in soil sample, Global Biogeochem. Cycles, 7, 109121, 1993.
  • Kruse, C. W., P. Moldrup, N. Iversen, Modelling diffusion and reaction in soils, II, Atmospheric methane diffusion and consumption in soils, Soil Sci., 161, 355365, 1996.
  • Leemans, R., Possible changes in natural vegetation patterns due to a global warming, IIASA Working Pap. WP-90-08, 22, Int. Inst. of App. Syst. Anal., Luxemburg, Austria, 1990.
  • Leemans, R., Global Holdridge Life Zone Classifications, Global Ecosystems Database Version 1.0: Disc A, Nat. Geophys. Data Cen., Boulder, Colo., 1992.
  • Legates, D. R., C. J. Willmott, Monthly average surface air temperature and precipitation, Global Ecosystems Database Version 1.0: Disc A, Nat. Geophys. Data Cen., Boulder, Colo., 1992.
  • Martikainen, P. J., H. Nykanen, J. Alm, J. Silvola, Changes in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy, Plant Soil, 168–169, 571577, 1995.
  • Matson, P. A., P. M. Vitousek, D. S. Schimel, Regional extrapolation of trace gas flux based on soils and ecosystems, Exchange of Trace Gases Between Terrestrial Ecosystems and the AtmosphereM. O. Andreae, D. S. Schimel, 97108, John Wiley, New York, 1989.
  • Matthews, E., Global vegetation and land use: New high-resolution data bases for climate studies, J. Clim. Appl. Meteorol., 22, 474487, 1983.
  • Matthews, E., I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 6186, 1987.
  • Millington, R. J., Gas diffusion in porous media, Science, 130, 100102, 1959.
  • Millington, R. J., J. P. Quirk, Permeability of porous solids, Trans. Faraday Soc., 57, 18, 1961.
  • Millington, R. J., R. C. Shearer, Diffusion in aggregated porous media, Soil Sci., 111, 372378, 1971.
  • Moldrup, P., C. W. Kruse, T. Yamaguchi, D. E. Rolston, Modelling diffusion and reaction in soils, I, A diffusion and reaction corrected finite difference calculation scheme, Soil Sci., 161, 347354, 1996a.
  • Moldrup, P., C. W. Kruse, D. E. Rolston, T. Yamaguchi, Modelling diffusion and reaction in soils, III, Predicting gas diffusivity from the Campbell soil-water retention model, Soil Sci., 161, 366375, 1996b.
  • Monteith, J. L., M. Unsworth, Principles of Environmental Physics, 291, Edward Arnold, London, 1990.
  • Mosier, A. R., W. J. Parton, D. W. Valentine, D. S. Ojima, D. S. Schimel, J. A. Delgado, CH4 and N2O fluxes in the Colorado shortgrass steppe, 1, Impact of landscape and nitrogen addition, Global Biogeochem. Cycles, 10, 387399, 1996.
  • Nesbit, S. P., G. A. Breitenbeck, A laboratory study of factors influencing methane uptake by soils, Agric. Ecosyst. Environ., 41, 3954, 1992.
  • Nielson, K. K., V. C. Rogers, G. W. Gee, Diffusion of radon through soils: A pore distribution model, Soil Sci. Soc. Am. J., 48, 482487, 1984.
  • Ojima, D. S., D. W. Valentine, A. R. Mosier, W. J. Parton, D. S. Schimel, Effect of land use change on methane oxidation in temperate forest and grassland soils, Chemosphere, 26, 675685, 1993.
  • Olesen, T., P. Moldrup, K. Henriksen, L. W. Petersen, Modelling diffusion and reaction in soils, IV, New models for predicting ion diffusivity, Soil Sci., 161, 633645, 1996.
  • Parton, W. J., A. R. Mosier, D. S. Ojima, D. W. Valentine, D. S. Schimel, K. Weier, A. E. Kulmala, Generalized model for N2 and N2O production from nitrification and denitrification, Global Biogeochem. Cycles, 10, 401412, 1996.
  • Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, S. A. Klooster, Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811841, 1993.
  • Potter, C. S., E. A. Davidson, L. V. Verchot, Estimation of global biogeochemical controls and seasonality in soil methane consumption, Chemosphere, 32, 22192246, 1996.
  • Reeburgh, W. S., S. C. Whalen, M. J. Alperin, The role of methylotrophy in the global methane budget, Microbial Growth on C-1 CompoundsJ. C. Murrell, D. P. Kelly, 114, Intercept, Andover, England, 1993.
  • Reeburgh, W. S., A. I. Hirsch, F. J. Sansone, B. N. Popp, T. M. Rust, Carbon kinetic isotope effect accompanying microbial oxidation of methane in boreal forest soils, Geochim. Cosmochim. Acta, 61, 47614767, 1997.
  • Rodhe, H., A comparison of the contribution of various gases to the greenhouse effect, Science, 248, 12171219, 1990.
  • Saxton, K. E., W. J. Rawls, J. S. Romberger, R. I. Papendick, Estimating generalized soil-water characteristics from texture, Soil Sci. Soc. Am. J., 50, 10311036, 1986.
  • Schimel, D. S., C. S. Potter, Process modelling and spatial extrapolation, Biogenic Trace Gases: Measuring Emissions From Soil and WaterP. A. Matson, R. C. Harriss, 358383, Blackwell Sci., Cambridge, Mass., 1995.
  • Schnell, S., G. M. King, Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils, Appl. Environ. Microbiol., 60, 35143521, 1994.
  • Scotter, D. R., G. W. Thurtell, P. A. C. Raats, Dispersion resulting from sinusoidal gas flow in porous materials, Soil Sci., 104, 306308, 1967.
  • Steudler, P. A., R. D. Bowden, J. M. Melillo, J. D. Aber, Influence of nitrogen fertilization on methane uptake in temperature forest soils, Nature, 341, 314316, 1989.
  • Striegl, R. G., Diffusional limits to the consumption of atmospheric methane by soils, Chemosphere, 26, 715720, 1993.
  • Striegl, R. G., A. L. Ishii, Diffusion and consumption of methane in an unsaturated zone in north-central Illinois, U.S.A., J. Hydrol., 111, 133143, 1989.
  • Striegl, R. G., T. A. McConnaughey, D. C. Thorstenson, E. P. Weeks, J. C. Woodward, Consumption of atmospheric methane by desert soils, Nature, 357, 145147, 1992.
  • Tate, C. M., R. S. Striegl, Methane consumption and carbon dioxide emission in tallgrass prairie: Effects of biomass burning and conversion to agriculture, Global Biogeochem. Cycles, 7, 735748, 1993.
  • Torn, M. S., J. Harte, Methane consumption by Montane soils: Implications for positive and negative feedback with climatic change, Biogeochem., 32, 5367, 1996.
  • Troech, F. R., J. D. Jabro, D. Kirkham, Gaseous diffusion equations for porous materials, Geoderma, 28, 239253, 1982.
  • Vörösmarty, C. J., B. Moore, A. L. Grace, P. M. Gildea, Continental scale models of water balance and fluvial transport: An application to South America, Global Biogeochem. Cycles, 3, 241265, 1989.
  • Webb, R. S., C. E. Rosenzweig, E. R. Levine, A global data set of soil particle size propertiesNASA Tech. Memo. 4286, 33, 1991.
  • Webb, R. S., C. E. Rosenzweig, E. R. Levine, A global data set of soil particle size properties, Global Ecosystems Database Version 1.0: Disc A, Nat. Geophys. Data Cen., Boulder, Colo., 1992.
  • Whalen, S. C., W. S. Reeburgh, Consumption of atmospheric methane by tundra soils, Nature, 346, 160162, 1990.
  • Whalen, S. C., W. S. Reeburgh, Moisture and temperature sensitivity of CH4 oxidation in boreal soils, Soil Biol. Biochem., 28, 12711281, 1996.
  • Whalen, S. C., W. S. Reeburgh, K. A. Sandbeck, Rapid methane oxidation in a landfill cover soil, Appl. Environ. Microbiol., 56, 34053411, 1990.
  • Whalen, S. C., W. S. Reeburgh, V. Barber, Methane consumption by taiga, Global Biogeochem. Cycles, 5, 261273, 1991.
  • Whalen, S. C., W. S. Reeburgh, V. A. Barber, Oxidation in boreal forest soils: A comparison of seven measures, Biogeochem., 16, 181211, 1992.
  • Yavitt, J. B., J. A. Simmons, T. J. Fahey, Methane fluxes in a northern hardwood forest ecosystem in relation to acid precipitation, Chemosphere, 26, 721730, 1993.