SEARCH

SEARCH BY CITATION

References

  • Adams, R. M., R. A. Fleming, C.-C. Chang, B. A. McCarl, C. Rosenzweig, A reassessment of economic effects of global climate change on U.S. agriculture, Clim. Change, 30, 147167, 1995.
  • Cooter, E. J., The impact of climate change on continuous corn production in the Southern U.S.A., Clim. Change, 16, 5382, 1990.
  • Curry, R. B., R. M. Peart, J. W. Jones, K. J. Boote, L. H. Allen Jr., Response of crop yield to predicted changes in climate and atmospheric CO2 using simulation, Trans. Am. Soc. of Agric. Eng., 334, 13831390, 1990.
  • Easterling, W. E., P. R. Crosson, N. J. Rosenberg, M. S. McKenney, L. A. Katz, K. M. Lemon, Agriculture impacts of and responses to climate change in the Missouri-Iowa-Nebraska-Kansas (MINK) region, Clim. Change, 24, 2361, 1993.
  • Easterling, W., A. Weiss, C. Hays, L. Mearns, Optimum spatial scales of climate information for simulating the effects of climate change on agrosystem productivity: The case of the U.S. Great Plains, J. Agric. Forest Meteorol., 90, 90519063, 1998.
  • Giorgi, F., L. O. Mearns, Approaches to regional climate change simulation: A review, Rev. of Geophys., 29, 191216, 1991.
  • Giorgi, F., M. R. Marinucci, G. T. Bates, Development of a second generation regional climate model (RegCM2): Boundary layer and radiative transfer processes, Mon. Weather Rev., 121, 27942813, 1993a.
  • Giorgi, F., M. R. Marinucci, G. De Canio, G. T. Bates, Development of a second generation regional climate model (RegCM2): Convective processes and assimilation of lateral boundary conditions, Mon. Weather Rev., 121, 28142832, 1993b.
  • Giorgi, F., L. Mearns, S. Shields, L. McDaniel, Regional nested model simulations of present-day and 2 × CO2 climate over the central Great Plains of the United States, Clim. Change, 40, 457493, 1998.
  • Goudriaan, J., Predicting crop yields under global change, Global Change and Terrestrial EcosystemsB. H. Walker, W. Steffen, Cambridge Univ. Press, New York, 1996.
  • Grotch, S. L., M. C. MacCracken, The use of general circulation models to predict regional climatic change, J. Clim., 4, 286303, 1991.
  • , Climate change and agriculture in Europe: Assessment of impacts and adaptation, Res. Rep., 9P. A. Harrison, R. E. Butterfield, T. E. Downing, Environ. Change Unit, Univ. of Oxford, Oxford, England, 1995.
  • Jamieson, P. D., J. R. Porter, J. Goudriaan, J. T. Ritchie, H. vanKeulen, W. Stol, A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought, Field Crops Res., 55, 2344, 1998.
  • , CERES-Maize: A Simulation Model of Maize Growth and DevelopmentC. A. Jones, J. R. Kiniry, Texas A&M University Press, College Station, 1986.
  • Jones, J. W., C. A. Jones, J. R. Williams, Complementary modeling, Appendix CReview of SCOPE 28 Report on Environmental Consequences of Nuclear War, II, Ecological and Agricultural Effects, Sci. Panel Rep., 5, C-1C-28, Comm. on Interagency Radiat., Off. of Sci. and Technol. Policy, Washington, D. C., 1988.
  • Kiniry, J. R., et al., Evaluation of two maize models for nine U.S. locations, Agron. J., 89, 421426, 1997.
  • Mavromatis, T., P. D. Jones, Evaluation of HadCM2 and direct use of daily GCM data in impact assessment studies, Clim. Change, 1998.
  • Mearns, L. O., C. Rosenzweig, R. Goldberg, The effect of changes in interannual climatic variability on CERES-wheat yields: Sensitivity and 2 × CO2 studies, J. Agric. Forest Meteorol., 62, 159189, 1992.
  • Mearns, L. O., C. Rosenzweig, R. Goldberg, Mean and variance change in climate scenarios: Methods, agricultural applications, and measures of uncertainty, Clim. Change, 35, 367396, 1997.
  • Moulin, A. P., H. J. Beckie, Evaluation of the CERES and EPIC models for predicting spring wheat grain yield over time, Can. J. Plant Sci., 73, 713719, 1993.
  • Passioura, J. B., Sense and nonsense in crop simulation, J. Aust. Inst. Agric. Sci., 39, 181183, 1973.
  • Passioura, J. B., Simulation models: Science, snake oil, education or engineering?, Agron. J., 88, 690694, 1996.
  • Porter, J. R., P. D. Jamieson, D. R. Wilson, Comparison of the wheat simulation models AFRCWHEAT2, CERES-Wheat and SWHEAT for non-limiting conditions of crop growth, Field Crops Res., 33, 131157, 1993.
  • Priestley, C. H. B., R. J. Taylor, On the assessment of surface heat and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81, 1972.
  • Reilly, J., (convening author),Agriculture in a changing climate: Impacts and adaptations, inIntergovernmental Panel on Climate Change (IPCC), Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change,chap. 13, contribution of Working Group II to the Second Assessment Report of the IPCC,Cambridge, England,Cambridge Univ. Press, pp.427467,1996.
  • Richardson, C. W., A. D. Nicks, Weather generator descriptionEPIC — Erosion/Productivity Impact Calculator, 1, Model Documentation, 93104, Agricultural Research Service, United States Department of Agriculture, Washington, D. C., 1990.
  • Riha, S. J., D. S. Wilks, P. Simoens, Impact of temperature and precipitation variability on crop model predictions, Clim. Change, 32, 293311, 1996.
  • Ritchie, J. T., Specifications of the ideal model for predicting crop yields, Climatic Risk in Crop Production: Models and Management for the Semi-arid Tropics and SubtropicsR. C. Muchow, J. A. Bellamy, 97122, Commonwealth Agric. Bur., Wallingford, England, 1991.
  • Ritchie, J. T., S. Otter, Description and performance of CERES-Wheat: A user-oriented wheat yield model, ARS Wheat Yield ProjectW. O. Willis, ARS-38, 159175U.S. Dept. of Agric.-Agric. Res. Serv., Washington, D. C., 1985.
  • Rosenzweig, C., Crop response to climate change in the Southern Great Plains: A simulation study, The Prof. Geogr., 42, 2039, 1990.
  • , Implications of Climate Change for International Agriculture: Crop Modeling StudyC. Rosenzweig, A. Iglesias, Rep. 230-B-94-003USEPA, OPPE, Washington, D. C., 1994.
  • Rosenzweig, C., M. L. Parry, Potential impact of climate change on world food supply, Nature, 367, 133137, 1994.
  • , The Potential Effects of Global Climate Change on the United StatesJ. B. Smith, D. A. Tirpak, U.S. EPA Rep. 230-05-61-050U.S. Environ. Prot. Agency, Washington, D. C., 1989.
  • Touré, A., D. J. Major, C. W. Lindwall, Comparison of five wheat simulation models in southern Alberta, Can. J. Plant Sci., 75, 6168, 1994.
  • Touré, A., D. J. Major, C. W. Lindwall, Sensitivity of four wheat simulation models to climate change, Can. J. Plant Sci., 75, 6974, 1995.
  • Watterson, I. G., M. R. Dix, H. B. Gordon, J. L. McGregor, The CSIRO nine-level atmospheric general circulation model and its equilibrium present and doubled CO2 climate, Aust. Meteorol. Mag., 44, 111125, 1995.
  • Williams, J. R., P. T. Dyke, C. A. Jones, EPIC — A model for assessing the effects of erosion on soil productivityProceedings of the International Conference on State-of-the-Art in Ecological ModelingColo. State Univ.Fort Collins, 1982.
  • Williams, J. R., C. A. Jones, P. T. Dyke, The EPIC model. EPIC-Erosion/Productivity Impact Calculator, 1, Model Documentation, USDA-ARS Tech. Bull., 1768, 392, U.S. Dep. of Agric., Washington, D.C., 1990.
  • Wolf, J., M. A. Semenov, H. Eckerson, L. G. Evans, A. Iglesias, J. R. Porter, Modelling the effects of climate change and variability on crops at the site scale: Effects of winter wheat: A comparison of five models, Climate Change and Agriculture in Europe: Assessment of Impacts and AdaptationP. A. Harrison, R. E. Butterfield, T. E. Downing, Res. Rep., 9, chap. 5.7, 231279, Environ. Change Unit, Oxford, England, 1995.