SEARCH

SEARCH BY CITATION

References

  • Bonan, G. B., Sensitivity of a GCM simulation to inclusion of inland water surfaces, J. Clim., 8, 26912704, 1995.
  • Bryan, F. O., B. G. Kauffman, W. G. Large, P. R. Gent, The NCAR CSM flux couplerTech. Note NCAR/TN-424+STRNatl. Cent. for Atmos. Res., Boulder, Colo., 1996.
  • Coe, M. T., Simulating continental surface waters: an application to Holocene Northern Africa, J. Clim., 107, 16801689, 1997.
  • , Environmental Systems Research Institute, Inc., ARC/INFO version 7.1.2, Redlands, Calif., 1997.
  • Gorney, A. J., R. Carter, World Data Bank II General User's Guide, Cent. Intel. Agency, Washington, D. C., 1987.
  • Hornberger, G. M., Data and analysis note: A new type of article for Water Resources Research, Water Resour. Res., 3012, 32413242, 1994.
  • Kite, G. W., A. Dalton, K. Dion, Simulation of streamflow in a macroscale watershed using general circulation model data, Water Resour. Res., 305, 15471559, 1994.
  • Liston, G. E., Y. C. Sud, E. F. Wood, Evaluating GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: Application to the Mississippi basin, J. Appl. Meteorol., 33, 394405, 1994.
  • Miller, J. R., G. L. Russell, G. Caliri, Continental-scale river flow in climate models, J. Clim., 7, 914928, 1994.
  • O'Donnell, G., B. Nijssen, D. P. Lettenmaier, A simple algorithm for generating streamflow networks for grid-based, macroscale hydrological models, Hydrol. Process., 1999.
  • Oki, T., andY. C. Sud, Design of Total Runoff Integrating Pathways (TRIP): A global river channel network,Earth Inter.,2,EI013,1998. (Available athttp://EarthInteractions.org.).
  • Perry, G. D., P. B. Duffy, N. L. Miller, An extended data set of river discharges for validation of general circulation models, J. Geophys. Res., 101D16, 21,33921,349, 1996.
  • Row, L. W., D. A. Hastings, P. K. Dunbar, TerrainBase Worldwide Digital Terrain Data Documentation Manual, Natl. Geophys. Data Cent., Boulder, Colo., 1995.
  • Russell, G. L., J. R. Miller, Global river runoff calculated from a global atmospheric general circulation model, J. Hydrol., 117, 241254, 1990.
  • Sausen, R., S. Schubert, L. Dumenil, A model of river runoff for use in coupled atmosphere-ocean models, J. Hydrol., 155, 337352, 1994.
  • , United Nations Educational Scientific and Cultural Organization, Discharge of Selected Rivers of the World, I, II, III (parts I, II, III, IV), Paris, France, 1985.
  • , U.S. Geological Survey,GTOPO30,http://edcwww.cr.usgs.gov/ landdaac/gtopo30/gtopo30.html,Earth Resour. Obs. Syst. Data Cent.,Sioux Falls, S. D.,1996.
  • , U.S. Geological Survey,HYDRO1k,http://edcwww.cr.usgs.gov/ landdaac/gtopo30/hydro/,Earth Resour. Obs. Syst. Data Cent.,Sioux Falls, S. D.,1998.
  • Vörösmarty, C. J., B. Moore III, A. L. Grace, M. P. Gildea, J. M. Melillo, B. J. Peterson, E. B. Rastetter, P. A. Steudler, Continental scale models of water balance and fluvial transport: An application to South America, Global Biogeochem. Cycles, 33, 241265, 1989.
  • Wessel, P., W. H. F. Smith, The Generic Mapping Tools (GMT) version 3.0 technical reference and cookbook, Natl. Oceanic and Atmos. Admin., Silver Spring, Md., 1995.