1. Top of page
  2. Abstract
  3. References

The concentration of CO2 in the atmosphere is projected to reach twice the preindustrial level by the middle of the 21st century. This increase will reduce the concentration of CO32− of the surface ocean by 30% relative to the preindustrial level and will reduce the calcium carbonate saturation state of the surface ocean by an equal percentage. Using the large 2650 m3 coral reef mesocosm at the BIOSPHERE-2 facility near Tucson, Arizona, we investigated the effect of the projected changes in seawater carbonate chemistry on the calcification of coral reef organisms at the community scale. Our experimental design was to obtain a long (3.8 years) time series of the net calcification of the complete system and all relevant physical and chemical variables (temperature, salinity, light, nutrients, Ca2+,pCO2, TCO2, and total alkalinity). Periodic additions of NaHCO3, Na2CO3, and/or CaCl2 were made to change the calcium carbonate saturation state of the water. We found that there were consistent and reproducible changes in the rate of calcification in response to our manipulations of the saturation state. We show that the net community calcification rate responds to manipulations in the concentrations of both Ca2+ and CO32− and that the rate is well described as a linear function of the ion concentration product, [Ca2+]0.69[CO32−]. This suggests that saturation state or a closely related quantity is a primary environmental factor that influences calcification on coral reefs at the ecosystem level. We compare the sensitivity of calcification to short-term (days) and long-term (months to years) changes in saturation state and found that the response was not significantly different. This indicates that coral reef organisms do not seem to be able to acclimate to changing saturation state. The predicted decrease in coral reef calcification between the years 1880 and 2065 A.D. based on our long-term results is 40%. Previous small-scale, short-term organismal studies predicted a calcification reduction of 14-30%. This much longer, community-scale study suggests that the impact on coral reefs may be greater than previously suspected. In the next century coral reefs will be less able to cope with rising sea level and other anthropogenic stresses.


  1. Top of page
  2. Abstract
  3. References
  • Adey, W. H., Coral reefs: Algal structured and mediated ecosystems in shallow, turbulent, alkaline waters, J. Phycol., 34, 393406, 1998.
  • Agegian, C. R., The biogeochemical ecology of Porolithon gardineri (Foslie). Ph.D. Dissertation,Univ. of Hawaii,Honolulu,1985.
  • Atkinson, M. J., H. West, H. Anderson, C. Langdon, S. Carpenter, T. McConnaughey, E. Hochberg, M. Smith, B. Marino, The coral reef biome at BIOSPHERE 2, Ecol. Eng., 13, 147171, 1999.
  • Bates, N., T. Takahashi, D. Chipman, A. Knapp, Variability of pCO2 on diel to seasonal timescales in the Sargasso Sea, J. Geophys. Res., 103, 1556715585, 1998.
  • Benson, B. B., D. Krause, The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol. Oceanogr., 29, 620632, 1984.
  • Berger, W. H., M. C. Bonneau, F. L. Parker, Foraminifera on the deepsea floor: Lysocline and dissolution rate, Ocean Acta, 249258, 1982.
  • Bischoff, W. D., F. T. MacKenzie, F. C. Bishop, Stabilities of synthetic magnesian calcites in aqueous solution: Comparison with biogenic materials, Geochimica et Cosmochimica Acta, 51, 14131423, 1987.
  • Borowitzka, M. A., Photosynthesis and calcification in the articulated coralline alga Amphiroa anceps and A. foliaceae, Mar. Biol., 62, 1723, 1981.
  • Brewer, P. G., J. C. Goldman, Alkalinity changes generated by phytoplankton growth, Limnol. Oceanogr., 21, 108117, 1976.
  • Broecker, W. S., T. Takahashi, Calcium carbonate precipitation on the Bahama Banks, J. Geophys. Res., 71, 15751602, 1966.
  • Broecker, W. S., T. Takahashi, H. J. Simpson, T.-H. Peng, Fate of fossil fuel carbon dioxide and the global carbon budget, Science, 206, 409418, 1979.
  • Buddemeier, R- W., D. G. Fautin, Global CO2 and evolution among the Scleractinia, Bull. Inst. Oceanogr., Monaco, 14, 3338, 1996a.
  • Buddemeier, R. W., D. G. Fautin, Saturation state and evolution and biogeography of symbiotic calcification, Bull. Inst. Oceanogr., Monaco, 14, 2332, 1996b.
  • Carpenter, S. R., Large scale perturbions: Opportunities for innovation, Ecology, 71, 20382043, 1990.
  • Chipman, D., J. Marra, T. Takahashi, Primary production at 47°N and 20°W in the North Atlantic: A comparison between the 14C incubation method and the mixed layer carbon budget, Deep Sea Res., Part II, 40, 151169, 1993.
  • Chisholm, J. R. M., J. P. Gattuso, Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities, Limnol. Oceanogr., 36, 12321239, 1991.
  • Dickson, A. G., Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15°K, Deep Sea Res., Part A, 37, 755766, 1990.
  • Dullo, W.-C., E. Moussavian, T. Brachert, The foralgal crust facies of the deeper fore reefs in the Red Sea, Geobios, 23, 261281, 1990.
  • Frost, T. M., D. L. DeAngelis, T. F. H. Allen, S. M. Bartell, D. J. Hall, S. H. Hurlbert, Scale in the design and interpretation of aquatic community research, Complex Interactions in Lake CommunitiesS. R. Carpenter, 229258, Springer-Verlag, New York, 1988.
  • Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano, M. Kiyohara, Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration, Mar. Biol., 117, 129132, 1993.
  • Garrels, R. M., M. E. Thompson, A chemical model for seawater at 25°C and one atmosphere total pressure, Am. J. Sci., 260, 5766, 1962.
  • Gattuso, J.-P., M. Frankignoulle, I. Bourge, S. Romaine, R. W. Buddemeier, Effect of calcium carbonate saturation of seawater on coral calcification, Global Planet. Change, 18, 3746, 1998.
  • Gattuso, J. P., D. Allemand, M. Frankignoulle, Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry, Am. Zool., 39, 160183, 1999.
  • Goreau, T. F., The physiology of skeleton formation in corals, 1. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull., 116, 5975, 1959.
  • Hemming, N. G., G. N. Hansen, A procedure for the analysis of boron by negative thermal ionization mass spectrometry, Chem. Geol., 114, 147156, 1994.
  • Houghton, J. T., et al., Climate Change 1995. The Science of Climate Change, Cambridge Univ. Press, New York, 1996.
  • Ip, Y. K., P. Krishnaveni, Incorporation of Strontium (90Sr2+) into the skeleton of the hermatypic coral Galaxea fasicularis, J. of Exper. Zool., 258, 273276, 1991.
  • Kanamori, S., H. Ikegami, Computer-processed potentiometric titration for the determination of calcium and magnesium in sea water, J. Oceanogr. Soc. of Jpn., 36, 177184, 1980.
  • Kinsey, D. W., Seasonality and zonation in coral reef productivity and calcification, Proc. Third Int. Coral Reef Symp., 2, 383388, 1977.
  • Kinsey, D. W., Standards of performance in coral reef primary production and carbon turnover, Perspectives on Coral Reefs, 209218, Australian Inst. of Mar. Sci., Townsville, 1983.
  • Kinsey, D. W., P. J. Davies, Carbon turnover, calcification and growth in coral reefs, Biogeochemical Cycling of Mineral-Forming ElementsD. J. Swaine, 131162, Elsevier Sci., New York, 1979.
  • Kleypas, J. A., R. R. Buddemeier, D. Archer, J. P. Gattuso, B. N. Opdyke, C. Langdon, M. Frankignoulle, Geochemical consequences of increased atmospheric CO2 on corals and coral reefs, Science, 284, 118120, 1999a.
  • Kleypas, J. A., J. McManus, L. A. B. Menez, Environmental limits to coral reef development. Where do we draw the line?, Amer. Zool., 39, 146159, 1999b.
  • Leclercq, N., J. P. Gattuso, J. Jaubert, CO2 partial pressure controls the calcification rate of a coral community, Global Change Biol., 2000.
  • Marubini, F., M. Atkinson, Effects of lowered pH and elevated nitrate on coral calcification, Mar. Ecol. Prog. Ser., 188, 117121, 1999.
  • Marubini, F., B. Thake, Bicarbonate addition promotes coral growth, Limnol. Oceanogr., 44, 716720, 1999.
  • Mehrbach, C., C. H. Culberson, J. E. Hawley, R. M. Pytkowicz, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897907, 1973.
  • Milliman, J. D., Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cycles, 7, 927957, 1993.
  • Mucci, A., The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure, Am. J. of Sci., 283, 780799, 1983.
  • Opdyke, B. N., B. H. Wilkinson, Carbonate mineral saturation state and cratonic limestone accumulation, Am. J. of Sci., 293, 217234, 1993.
  • Pearse, V. B., L. Muscatine, Role of symbiotic algae (zooxanthellae) in coral calcification, Biol. Bull., 141, 350363, 1971.
  • Peng, T.-H., T. Takahashi, W. S. Broecker, J. Olafsson, Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water, Tellus, 39, 439458, 1987.
  • Peterson, L. C., W. L. Prell, Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline, Mar. Geol., 64, 259290, 1985.
  • , Design and Analysis of Ecological ExperimentsS. M. Scheiner, J. Gurevitch, 445, Chapman and Hall, New York, 1993.
  • Schindler, D. W., Detecting ecosystem responses to anthropogenic stress, Can. J. of Fisheries and Aquatic Science, 44, 625, 1987.
  • Simkiss, K., Phosphates as crystal poisons of calcification, Biol. Rev., 39, 487505, 1964.
  • Simpson, H. J., T. Takahashi, Interstitial water studies, Leg 15, chemical model of seawater and saline waters, Initial Reports of the Deep Sea Drilling Project, 20, 877886, U. S. Gov. Printing Office, Washington, 1973.
  • Smith, S. V., M. J. Atkinson, Mass balance of carbon and phosphorus in Shark Bay, Western Australia, Limnol. Oceanogr., 28, 625639, 1983.
  • Smith, S. V., R. W. Buddemeier, Global change and coral reef ecosystems, Ann. Rev. Ecol. Syst., 23, 89118, 1992.
  • Smith, S. V., S. Chandra, L. Kwitko, R. C. Schneider, J. Schoonmaker, J. Seeto, T. Tebano, G. W. Tribble, Chemical stoichiometry of lagoonal metabolism: Preliminary report on an environmental chemistry survey of Christmas Island, KiribatiUNIHI-SEAGRANT-CR-84-01U. Hawaii/U. South Pacific, Int. Sea Grant Program, Honolulu, 1985.
  • Smith, S. V., P. L. Jokiel, Water composition and biogeochemical gradients in the Canton Atoll lagoon, Atoll Res. Bull., 221, 1753, 1978.
  • Smith, S. V., F. Pesret, Processes of carbon dioxide flux in the Fanning Island Lagoon, Pac. Sci., 28, 225245, 1974.
  • Suzuki, A., T. Nakamori, H. Kayanne, The mechanism of production enhancement in coral reef carbonate systems: Model and empirical results, Sed. Geol., 99, 259280, 1995.
  • Tambutte, E., D. Allemand, E. Mueller, J. Jaubert, A compartmental approach to the mechanism of calcification in hermatypic corals, J. Exp. Biol., 199, 10291041, 1996.
  • Weiss, R., Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203215, 1974.