SEARCH

SEARCH BY CITATION

References

  • Bartlett, K. B., R. C. Harriss, Review and assessment of methane emissions from wetlands, Chemosphere, 26, 261320, 1993.
  • Bogner, J. E., Anaerobic burial of refuse in landfills: increased atmospheric methane and implications for increased carbon storage, Ecol. Bull., 42, 98108, 1992.
  • Bogner, J. E., E. Matthews, Temporal variations in landfill methane emissions (1970–1995): A global perspective, Proceedings Sardinia '99 International Solid Waste and Landfilling Symposium, IV3342, Centro di Ingegneria Sanitaria Ambientale (CISA), Univ. of Cagliari, Sardinia, 1999.
  • Bogner, J. E., K. A. Spokas, E. Burton, R. Sweeney, V. Corona, Landfills as atmospheric methane sources and sinks, Chemosphere, 31, 41194130, 1995.
  • Bogner, J. E., K. Spokas, E. Burton, Kinetics of methane oxidation in landfill cover materials: major controls, a whole-landfill oxidation experiment, and modeling of net methane emissions, Environ. Sci. Technol., 31, 25042614, 1997a.
  • Bogner, J. E., M. Meadows, P. Czepiel, Fluxes of methane between landfills and the atmosphere: Natural and engineered controls, Soil Use Manage., 13, 268277, 1997b.
  • Bogner, J. E., K. Spokas, E. Burton, Temporal variations in greenhouse gas emissions at a midlatitude landfill, J. Environ. Qual., 28, 278288, 1999.
  • Borjesson, G., Methane oxidation in landfill cover soils, Ph.D. dissertation,Dept. of Microbiol., Swedish Univ. of Agric. Sci., Uppsala, Sweden, 1997.
  • Bosse, U., P. Frenzel, Methane emissions from rice microcosms: The balance of production, accumulation and oxidation, Biogeochemistry, 41, 199214, 1998.
  • Bubier, J. L., T. R. Moore, L. Bellisario, N. T. Comer, P. M. Crill, Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada, Global Biogeochem. Cycles, 9, 455470, 1995.
  • Chanton, J., K. Liptay, Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique, Global Biogeochem. Cycles, 14, 5160, 2000.
  • Conrad, R., F. Rothfuss, Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium, Biol. Fertil. Soils, 12, 2832, 1991.
  • Czepiel, P., et al., Landfill methane emissions measured by enclosure and atmospheric tracer methods, J. Geophys. Res., 101, 1671116719, 1996a.
  • Czepiel, P., B. Mosher, et al., Quantifying the effect of oxidation on landfill methane emissions, J. Geophys. Res., 101, 1672116729, 1996b.
  • Dise, N. B., E. Gorham, E. S. Verry, Environmental factors controlling methane emissions from peatlands in Northern Minnesota, J. Geophys. Res., 98, 1058310594, 1993.
  • Fechner, E. J., H. F. Hemond, Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland, Global Biogeochem. Cycles, 6, 3344, 1992.
  • Frenzel, P., F. Rothfuss, R. Conrad, Oxygen profiles and methane turnover in a flooded rice microcosm, Biol. Fertil. Soils, 14, 8489, 1992.
  • Gerard, G., J. Chanton, Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: Defining upper limits, Biogeochemistry, 23, 7997, 1993.
  • Granbergg, G., C. Mikkela, I. Sundh, B. H. Svensson, M. Nilsson, Sources of spatial variation in methane emission from mires in northern Sweden: A mechanistic approach in statistical modeling, Global Biogeochem. Cycles, 11, 135150, 1997.
  • Happell, J. D., J. P. Chanton, G. J. Whiting, W. J. Showers, Stable isotopes as tracers of methane dynamics in Everglades marshes with and without active populations of methane oxidizing bacteria, J. Geophys. Res., 98, 1477114782, 1993.
  • Holzapfel-Pschom, A., R. Conrad, W. Seiler, Effects of vegetation on the emission of methane from submerged paddy soils, Plant Soil, 92, 223233, 1986.
  • Huang, Y., R. L Sass, F. M. Fisher, Methane emission from Texas rice paddy soils, 2. Seasonal contribution of rice biomass production to CH4 emission, Global Change Biology, 3, 491500, 1997.
  • Huang, Y., R. L. Sass, F. M. Fisher, A semi-empirical model of methane emission from flooded rice paddy soils, Global Change Biol., 4, 247268, 1998a.
  • Huang, Y., R. L. Sass, F. M. Fisher, Model estimates of methane emission from irrigated rice cultivation of China, Global Change Biol., 4, 809822, 1998b.
  • Khalil, M. A. K., R. A. Rasmussen, M. J. Shearer, Effects of production and oxidation processes on methane emissions from rice fields, J. Geophys. Res., 103, 2523325239, 1998.
  • Kimura, M., Methane emission from paddy soils in Japan and Thailand, in: World Inventory of Soil Emission Potentials, N. H. Batjes, E. M. Bridges, WISE report, 2, ISRIC, Wageningen, Netherlands, 1992.
  • King, J. Y., W. S. Reeburgh, S. K. Regli, Methane emission and transport by arctic sedges in Alaska: Results of a vegetation removal experiment, J. Geophys. Res., 103, 2908329092, 1998.
  • Knightley, D., D. Nedwell, M. Cooper, Capacity for methane oxidation in landfill cover soils measured in laboratory-scale microcosms, Appl. Environ. Microbiol., 61, 592601, 1995.
  • Knorr, W., Satellite remote sensing and modelling of the global CO2 exchange of land vegetation: A synthesis study, Ph.D. dissertation,Ex. No. 49,Max-Planck-Institut fuer Meteorologie, Hamburg, 1997.
  • Lelieveld, J., P. J. Crutzen, F. J. Dentener, Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus, Ser. B., 50B, 128150, 1998.
  • Lewis, S. T., The use of redox measurements to study methane mitigation options in Texas rice paddies, Ph.D. dissertation,Rice University, Houston, Tex., 1996.
  • Matthews, E., I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 6186, 1987.
  • Meadows, M., C. Franklin, D. Campbell, M. Wenbom, andJ. Berry, Methane Emissions from Land Disposal of Solid Waste, Rep. No. PH2/6,Energy Technology Support Unit (ETSU) to the International Energy Agency Greenhouse Gas R & D Programme, Cheltonham, Gloucestershire, U.K..
  • Moore, T. R., N. T. Roulet, Methane flux: Water table relations in northern wetlands, Geophys, Res. Lett., 20, 587590, 1993.
  • Roulet, N. T., R. Ash, T. R. Moore, Low boreal wetlands as a source of atmospheric methane, J. Geophys. Res., 97, 37393749, 1992a.
  • Roulet, N. T., T. R. Moore, J. Bubier, P. Lafleur, Northern fens: Methane flux and climatic change, Tellus, Ser. B., 44B, 100105, 1992b.
  • Sass, R. L., F. M. Fisher, F. T. Turner, M. F. Jund, Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation, Global Biogeochem. Cycles, 5, 335350, 1991.
  • Sass, R. L., F. M. Fisher, Y. B. Wang, F. T. Turner, M. F. Jund, Methane emission from rice fields: The effect of floodwater management, Global Biogeochem. Cycles, 6, 249262, 1992.
  • Schipper, L. A., K. R. Reddy, Determination of methane oxidation in the rhizosphere of Sagittaria lancifolia using methyl fluoride, Soil Sci. Soc. of Am. J., 60, 611616, 1996.
  • Schutz, H., W. Seiler, R. Conrad, Processes involved in formation and emission of methane in rice paddies, Biogeochemistry, 7, 3353, 1989.
  • Shannon, R. D., J. R. White, A three-year study of controls on methane emissions from two Michigan peatlands, Biogeochemistry, 27, 3560, 1994.
  • Shannon, R. D., J. R. White, J. E. Lawson, B. S. Gilmour, Methane efflux from emergent vegetation in peatlands, J. Ecol., 84, 239246, 1996.
  • Sigren, L. K., Soil acetate and methane emissions from irrigated rice: The effects of field drainage and cultivar choice, Ph.D. dissertation,Rice Univ., Houston, Tex., 1996.
  • Spokas, K., Landfill Methane Emissions Model (LMEM)Proceedings 1996 Madison Waste ConferenceUniv. of Wisc. Eng Exten.Madison, Wisc., 1996.
  • Walter, B. P., Development of a process-based model to derive methane emissions from natural wetlands for climate studies, Ph.D. dissertation, Ex. No. 60,Max-Planck-Institut fuer Meteorologie, Hamburg, 1998.
  • Walter, B. P., M. Heimann, A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters and climate, Global Biogeochem. Cycles, 2000.
  • Walter, B. P., M. Heimann, R. D. Shannon, J. R. White, A process-based model to derive methane emissions from natural wetlands, Geophys. Res. Lett., 23, 37313734, 1996.
  • Whiting, G. J., J. P. Chanton, Plant-dependent CH4 emission in a subarctic Canadian fen, Global Biogeochem. Cycles, 6, 225231, 1992.
  • Yagi, K., K. Minami, Effects of organic matter applications on methane emission from Japanese paddy fields, Soil Sci. Plant Nutrition, 36, 599610, 1990.
  • Yagi, K., H. Tsuruta, K. Kanda, K. Minami, Automated monitoring of methane emission from a rice paddy field: The effect of water management, Global Biogeochem. Cycles, 10, 255267, 1996.
  • Yavitt, J. B., G. E. Lang, D. M. Downey, Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States, Global Biogeochem. Cycles, 2, 253268, 1988.