SEARCH

SEARCH BY CITATION

References

  • Amiotte-Suchet, P., J. L. Probst, Flux de CO2 consommé par altération chimique continentale : influence du drainage et de la lithologie, C. R. Acad. Sci. Paris, 317, 615622, 1993.
  • Amiotte-Suchet, P., J. L. Probst, A global model for present day atmospheric /soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2), Tellus, Ser. B, 47, 273280, 1995.
  • Arthur, M. A., W. E. Dean, S. O. Schlanger, Variations in the global carbon cycle during the cretaceous related to climate, volcanism, and changes in atmospheric CO2, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Geophys. Monogr. Ser.E. T. Sundquist, W. S. Broecker, 32, 504530, AGU, Washington DC, 1985.
  • Aumont, O., Etude du cycle naturel du carbone dans un modèle 3D de l'océan mondial, Ph.D. thesis,Univ. Paris VI,Pads,1998.
  • Aumont, O., J. C. Orr, P. Monfray, G. Madec, E. Maier-Reimer, Nutrient trapping in the equatorial pacific: The ocean circulation solution, Global Biogeochem. Cycles, 13, 351371, 1999.
  • Berner, R. A., Atmospheric carbon dioxide levels over Phanerozoic time, Science, 249, 13821386, 1990.
  • Blanke, B., P. Delecluse, Low frequency variability of the tropical Atlantic ocean simulated by a general circulation model with mixed layer physics, J. Phys. Oceanogr., 23, 13631388, 1993.
  • Bousquet, P., P. Ciais, P. Peylin, M. Ramonet, P. Monfray, Inverse modeling of annual atmospheric CO2 sources and sinks, 1, Method and control inversion, J. Geophys. Res., 104, 2614126178, 1999.
  • Brewer, P. G., C. Goyet, D. Dyrssen, Carbon dioxide transport by ocean currents at 25°N latitude in the Atlantic Ocean, Science, 246, 477479, 1989.
  • Broecker, W. S., T. H. Peng, Gas exchange rates between air and the sea, Tellus, 26, 2135, 1974.
  • Broecker, W. S., T. H. Peng, Interhemispheric transport of carbon through the ocean, The Global Carbon CycleM. Heimann, 551571, Springer Verlag, New-York, 1992.
  • Ciais, P., et al., Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling, J. Geophys. Res., 100, 50515070, 1995.
  • Delecluse, P., M. Imbard, C. Lévy, G. Madec, reference manual, OPA-Ocean General Circulation model, Lab. Océ. Dyn. Clim., Univ. Paris VI, Paris, 1993.
  • Denning, A. S., I. Y. Fung, D. Randall, Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota, Nature, 376, 240243, 1995.
  • Des Marais, D. J., Carbon exchange between the mantle and the crust, and its effect upon the atmosphere: Today compared to Archean time, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Geophys. Monogr. Ser.E. T. Sundquist, W. S. Broecker, 32, 602611, AGU, Washington DC, 1985.
  • Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, P. Tans, A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models, Science, 282, 442446, 1998.
  • Frankignoulle, M., G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J. M. Théate, Carbon dioxide emission from European estuaries, Science, 282, 434436, 1998.
  • Gaspar, P., Y. Gregoris, J. M. Lefevre, A simple eddy kinetic energy model for simulations of the ocean vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study Site site, J. Geophys. Res., 95, 1617916193, 1990.
  • Hedges, J. I., R. G. Keil, Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem., 49, 81115, 1995.
  • Heimann, M., The global atmospheric tracer model tm2Tech. Rep. 10Deutsches Klimarechenzentrum, Hamburg, Germany, 1995.
  • Heimann, M., C. D. Keeling, A three-dimensional model of atmospheric CO2 transport based on observed winds: 2.Model description and simulated tracer experiments, Aspects of Climate Variability in the Pacific and Western Americas Geophys. Monogr. Ser.D. H. Peterson, 55, 237275, AGU, Washington D.C., 1989.
  • Heimann, M., C. D. Keeling, I. Y. Fung, Simulating the atmospheric carbon dioxide distribution with a three-dimensional tracer model, The Changing Carbon Cycle: A Global AnalysisJ. R. Trabalka, D. E. Reichle, 1649, Springer-Verlag, New York, 1986.
  • Hellermann, S., M. Rosenstein, Normal monthly windstress over the world ocean with error estimates, J. Phys. Oceanogr., 24, 619637, 1983.
  • Holfort, J., K. M. Johnson, B. Schneider, G. Siedler, D. W. R. Wallace, Meridional transport of dissolved inorganic carbon in the South Atlantic Ocean, Global Biogeochem. Cycles, 12, 479500, 1998.
  • Jorgensen, B. B., Processes at sediment-water interface, The Major Biogeochemical Cycles and Their Interactions, , 21B. Bolin, R. B. Cook, 477509, John Wiley, New York, 1983.
  • Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, H. Roeloffzen, A Three dimensional model of atmospheric CO2 transport based on observed winds, 1, Analysis of observational data, Aspects of climate Variability in the Pacific and Western Americas Geophys. Monogr. Ser.D. H. Peterson, 55, 165236, AGU, Washington DC, 1989.
  • Keeling, R. F., T. H. Peng, Transport of heat, CO2 , and O2 by the Atlantic's thermohaline circulation, Philos. Trans. R. Soc. London, Ser. B, 348, 133142, 1995.
  • Law, R. M., et al., Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inversions, Global Biogeochem. Cycles, 10, 783796, 1996.
  • Lloyd, J., Current perspectives on the terrestrial carbon cycle, Tellus, Ser. B, 51, 336342, 1999.
  • Ludwig, W., J. L. Probst, River sediment discharge to the oceans: Present day controls and global budgets, Am. J. of Sci., 298, 265295, 1998.
  • Ludwig, W., P. Amiotte-Suchet, J. L. Probst, River discharge of carbon to the world's oceans: Determining local inputs of alkalinity and of dissolved and particulate organic carbon, C. R. Acad. Sci. Paris, 323, 10071014, 1996a.
  • Ludwig, W., J. L. Probst, S. Kempe, Predicting the oceanic input of organic carbon by continental erosion, Global Biogeochem. Cycles, 10, 2341, 1996b.
  • Madec, G., M. Imbard, A global ocean mesh to overcome the North Pole singularity, Clim. Dyn., 12, 381388, 1996.
  • Maier-Reimer, E., Geochemical cycles in an ocean general circulation model: Preindustrial tracer distributions, Global Biogeochem. Cycles, 7, 645677, 1993.
  • Masarie, K. A., P. P. Tans, Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record, J. Geophys. Res., 100, 1159311610, 1995.
  • Meybeck, M., Riverine transport of atmospheric carbon: Sources, global typology and budget, Water, Air, Soil Pollut., 70, 443463, 1993a.
  • Meybeck, M., N, P and S in rivers: From sources to global inputs, Interactions of C, N, P, and S Biogeochemical Cycles and Global Change NATO ASI Ser.R. Wollast, F. T. Mackenzie, L. Chou, 14, 163197, Springer-Verlag, New York, 1993b.
  • Miller, J. R., G. L. Russell, G. Caliri, Continental-scale river flow in climate models, J. Climate, 7, 914928, 1994.
  • Milliman, J. D., Flux and fate of fluvial sediment and water in coastal seas, Ocean Margin Processes in Global ChangeR. F. C. Mantoura, J. M. Martin, R. Wollast, 6989, Wiley-Interscience, New York, 1991.
  • Milliman, J. D., R. H. Meade, World-wide delivery of river sediments to the oceans, J. Geol., 91, 121, 1983.
  • Oberhüber, J. M., An atlas on the ‘COADS’ Data Set: The Budget of Heat, Buoyancy, and Turbulent Kinetic Energy at the Surface of the Global Oceanchap. 15, Max-Planck Inst. für Meteorol., Hamburg, Germany, 1988.
  • Orr, J. C., Ocean Carbon-Cycle Model Intercomparison Project (OCMIP): Phase 1 (1995–1997)GAIM Rep. 7IGBP/GAIM Office, Univ. New Hampshire, Durham, 1999.
  • Pearman, G. I., P. Hyson, Activities of the global biosphere as reflected in atmospheric CO2 records, J. Geophys. Res., 85, 44684474, 1980.
  • Ramonet, M., Modelisation du transport atmosphérique du dioxyde de carbone dans l'hemisphère sud, Ph.D. thesis,Univ. Paris VII,Paris,1994.
  • Rayner, P., I. Enting, R. Francey, R. Langenfelds, Reconstructing the recent carbon cycle from atmospheric CO2, δ13c and O2/N2 observations, Tellus, Ser. B, 51, 213232, 1999.
  • Sarmiento, J. L., E. T. Sundquist, Revised budget for the oceanic uptake of anthropogenic carbon dioxide, Nature, 356, 598593, 1992.
  • Sarmiento, J. L., P. Monfray, E. Maier-Reimer, O. Aumont, R. Murnane, J. C. Orr, Spatial distribution of oceanic CO2 sources and sinks: A comparison of three ocean general circulation models, Global Biogeochem. Cycles, 14, 12671282, 2000.
  • Siegenthaler, U., J. L. Sarmiento, Atmospheric carbon dioxide and the ocean, Nature, 365, 119125, 1993.
  • Smith, S. V., J. T. Hollibaugh, Coastal Metabolism and the oceanic organic carbon balance, Rev. of Geophys., 31, 7589, 1993.
  • Stephens, B. B., R. F. Keeling, M. Heimann, K. D. Six, R. Murnane, K. Caldeira, Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration, Global Biogeochem. Cycles, 12, 213230, 1999.
  • Takahashi, T., W. S. Broecker, S. Langer, Redfield ratio based on chemical data from isopycnal surfaces, J. Geophys. Res., 90, 69076924, 1985.
  • Tans, P. P., I. Y. Fung, T. Takahashi, Observational constraints on the global atmospheric CO2 budget, Science, 247, 14311438, 1990.
  • Taylor, J. A., J. Lloyd, Sources and sinks of atmospheric CO2, Aust. J. Bot., 40, 407418, 1992.
  • Taylor, J. A., J. C. Orr, The natural latitudinal distribution of atmospheric CO2, Global and Planetary Change, 2000.