• Andres, R. J., G. Marland, I. Fung, E. Matthews, A 1°x1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990, Global Biogeochem. Cycles, 10, 419429, 1996.
  • Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, N. Zhang, Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network, J. Geophys. Res., 99D11, 2283122855, 1994.
  • Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, P. Tans, A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models, Science, 282, 442446, 1998.
  • Gloor, M., S.-M. Fan, S. W. Pacala, J. L. Sarmiento, M. Ramonet, A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale, J. Geophys. Res., 104, 1424514260, 1999.
  • Hamilton, K. P., J. Wilson, J. D. Mahlman, L. M. Umscheid, Climatology of the SKYHI troposhere-stratosphere-mesosphere model, J. Atmos. Sci., 48, 651678, 1995.
  • Keeling, C. D., S. C. Piper, M. Heimann, A three dimensional model of atmospheric CO2 transport based on observed winds, 4, Mean annual gradients and interannual variations, Aspects of Climate Variability in the Pacific and the Western AmericasD. H. Peterson, Geophys. Monogr. Ser., 55, 305363, AGU, Washington, D.C., 1989.
  • Kirkpatrick, S., J. C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220, 671680, 1983.
  • Levy II, H., W. J. Moxim, Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel combustion, Tellus, 41B, 256271, 1989.
  • Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, San Diego, 1989.
  • Potter, C. S., J. T. Randerson, C. B. Field, P. A. Mason, P. M. Vitousek, H. A. Mooney, S. A. Klooster, Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811841, 1993.
  • Press, W., S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes2nd ed., Cambridge University Press, Cambridge, 1992.
  • Rayner, P. J., I. G. Enting, C. M. Trudinger, Optimizing the CO2 observing network for constraining sources and sinks, Tellus, 48B, 433444, 1996.
  • Takahashi, T., R. A. Feely, R. Weiss, R. H. Wanninkhof, D. W. Chipman, S. C. Sutherland, T. T. Takahashi, Global air-sea flux of CO2: An estimate based on measurements of sea-air pCO2 difference, Revelle Symposium: Proceedings of the Natl. Acad. SciC. D. Keeling, 94, 82928299, Natl. Acad. Sci., Washington, D.C., 1997.
  • Tans, P., Observational Strategy for Assessing the Role of Terrestrial Ecosystems in the Global Carbon Cycle: Scaling Down to Regional Scales, Scaling Physiological ProcessesJ. P. Ehleringer, C. B. Field, Physiological Ecology, 179190, Academic Press, San Diego, 1993.
  • Tans, P. P., P. S. Bakwin, D. W. Guenther, A feasible global carbon cycle observing system: a plan to decipher today's carbon cycle based on observations, Global Ch. Biology, 2, 309318, 1996.
  • Tans, P. P., I. Y. Fung, T. Takahashi, Observational constraints on the global atmospheric CO2 budget, Science, 247, 14311438, 1990.