SEARCH

SEARCH BY CITATION

References

  • Ball, J. T., I. E. Woodrow, J. A. Berry, A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, Progress in Photosynthesis Research, 4J. Biggins, 221224, Kluwer Acad., Norwell, Mass., 1987.
  • Bonan, G. B., A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide, National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, Colo., 1996.
  • Botkin, D. B., J. F. Janak, J. R. Wallis, Some ecological consequences of a computer model of forest growth, J. Ecol., 60, 849873, 1972.
  • Brady, N. C., The Nature and Properties of Soils, Macmillan, Indianapolis, Indiana, 1974.
  • Burns, R. C., R. W. F. Hardy, Nitrogen Fixation in Bacteria and Higher Plants, Mol. Biol. Biochem. and Biophysics., 21, Springer-Verlag, New York, 1975.
  • Cannell, M. G. R., Woody biomass of forest stands, For. Ecol. Manage., 8, 299312, 1984.
  • Collatz, G. J., R.-C. Miquel, J. A. Berry, Coupled photosynthesis-stomatal conductance model for leaves of C4 plants, Aust. J. Plant Physiology, 19, 519538, 1992.
  • Comins, H. N., R. E. McMurtrie, Long-term response of nutrient-limited forests to CO2 enrichment, Ecol. Appl., 3, 666681, 1993.
  • Cramer, W., Using plant functional types in a global vegetation model, Plant Functional Types, T. M. Smith, H. H. Shugart, F. I. Woodward, 271288, Cambridge Univ. Press, New York, 1997.
  • Dolman, A. J., D. Gregory, The parameterization of rainfall interception in GCMs, Q. J. R. Meteorol. Soc., 118, 455467, 1992.
  • Eswaran, H., E. vanden Berg, P. Reich, Organic carbon in soils of the world, Soil Sci. Soc. Am. J., 57, 192194, 1993.
  • Farquhar, G. D., S. vonCaemmerer, Modelling of photosynthetic response to environmental conditions, Physiological Plant Ecology II: Water Relations and Carbon Assimilation, 12BO. Lange, et al., 549587, Springer-Verlag, New York, 1982.
  • Field, C. B., M. J. Behrenfeld, J. T. Randerson, P. Falkowski, Primary production of the biosphere: Integrating terrestrial and oceanic components, Science, 281, 237240, 1998.
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, A. Haxeltine, An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cycles, 10, 603628, 1996.
  • Friend, A. D., The prediction and physiological significance of tree height, Vegetation Dynamics and Global Change, A. M. Solomon, H. H. Shugart, 101115, Chapman and Hall, New York, 1993.
  • Friend, A. D., PGEN: An integrated model of leaf photosynthesis, transpiration, and conductance, Ecol. Modell., 77, 233255, 1995.
  • Friend, A. D., Parameterisation of a global daily weather generator for terrestrial ecosystem and biogeochemical modelling, Ecol. Modell., 109, 121140, 1998.
  • Friend, A. D., A. K. Stevens, R. G. Knox, M. G. R. Cannell, A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0), Ecol. Modell., 95, 249287, 1997.
  • Goldewijk, K. K., R. Leemans, Systems models of terrestrial carbon cycling, Carbon Sequestration in the Biosphere, M. A. Beran, 129151, Springer-Verlag, New York, 1995.
  • Haxeltine, A., I. C. Prentice, BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types, Global Biogeochem. Cycles, 10, 693709, 1996.
  • , Intergovernmental Panel on Climate change (IPCC), Technical summary, Climate Change 1995: The Science of Climate Change, J. T. Houghton, et al., 849, Cambridge Univ. Press, New York, 1996.
  • Jarvis, P. G., The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. London, Ser. B, 273, 593610, 1976.
  • Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, R. A. Wood, The second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup and validation, Clim. Dyn., 13, 103134, 1997.
  • Jones, H. G., Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, Cambridge Univ. Press, New York, 1992.
  • Kern, J. S., Geographic patterns of soil water-holding capacity in the contiguous United States, Soil Sci. Soc. Am. J., 59, 11261133, 1995.
  • Kramer, K., Phenology and growth of European trees in relation to climate change, Ph.D. thesis,, 210 pp.,Landbouw Univ. Wageningen, Netherlands, 1996.
  • Kuchler, A. W., Potential natural vegetation of the conterminous United States, American Geographical Society, New York, 1964.
  • Linacre, E. T., A simple formula for estimating evaporation rates in various climates, using temperature data alone, Agric. Meteorol., 18, 409424, 1977.
  • Lloyd, J., J. A. Taylor, On the temperature dependence of soil respiration, Functional Ecol., 8, 315323, 1994.
  • Matthews, E., Global vegetation and land use: New high resolution data bases for climate studies, J. Clim. Appl. Meteorol., 22, 474487, 1983.
  • Melillo, J., A. McGuire, D. Kicklighter, B. Moore III, C. Vorosmarty, A. Schloss, Global climate change and terrestrial net primary productivity, Nature, 363, 234240, 1993.
  • Monteith, J. L., M. H. Unsworth, Principles of Environmental Physics, Edward Arnold, London, 1990.
  • Mooney, H. A., Ecosystem function of biodiversity: The basis of the viewpoint, Plant Functional Types, T. M. Smith, H. H. Shugart, F. I. Woodward, 341354, Cambridge Univ. Press, New York, 1997.
  • Neilson, R. P., S. W. Running, Global dynamic vegetation modelling: Coupling biogeochemistry and biogeography models, Global Change and Terrestrial Ecosystems, B. H. Walker, W. L. Steffen, 451465, Cambridge Univ. Press, New York, 1996.
  • Nelson, D. W., andL. E. Sommers, Total carbon, organic carbon, and organic matter. in Methods of Soil Analysis. Part 2, Agron. Monogr., 9,2nd ed. edited by A. L. Page, et al., pp. 539579,American Society of Agronomy, Madison, Wisc.1982.
  • Nobel, P. S., Physicochemical and Environmental Plant Physiology, Academic, San Diego, Calif., 1991.
  • Olson, J. S., J. A. Watts, L. J. Allison, Carbon in live vegetation of major world ecosystems, Oak Ridge Nat. Lab., Oak Ridge, Tenn., 1983.
  • Olson, J. S., J. A. Watts, L. J. Allison, Major world ecosystem complexes ranked by carbon in live vegetation: A database, Carbon Dioxide Info. Cent., Oak Ridge Nat. Lab., Oak Ridge, Tenn., 1985.
  • Parton, W. J., et al., Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide, Global Biogeochem. Cycles, 7, 785809, 1993.
  • Post, W. M., W. R. Emanuel, P. J. Zinke, A. G. Stangenberger, Soil carbon pools and world life zones, Nature, 298, 156159, 1982.
  • Post, W. M., T. H. Peng, W. R. Emmanuel, A. W. King, V. H. Dale, D. L. De Angelis, The global carbon cycle, Am. Sci., 78, 310326, 1990.
  • Prentice, I. C., R. Leemans, Pattern and process and the dynamics of forest structure: A simulation approach, J. Ecol., 78, 340355, 1990.
  • Reich, P. B., B. D. Kloeppel, D. S. Ellsworth, M. B. Walters, Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species, Oecologia, 104, 2430, 1995.
  • Richardson, C. W., D. A. Wright, WGEN: A model for generating daily weather variables, U. S. Dep. of Agric., Agric. Res. Serv., 1984.
  • Ryan, M. G., Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii, Can. J. For. Res., 20, 4857, 1990.
  • Ryan, M. G., Effects of climate change on plant respiration, Ecol. Appl., 1, 157167, 1991.
  • Scholes, R. J., B. H. Walker, An African savanna: A synthesis of the Nylsvley study, Cambridge Univ. Press, New York, 1993.
  • Sellers, P. J., J. A. Berry, G. J. Collatz, C. B. Field, F. G. Hall, Canopy reflectance, photosynthesis, and transpiration, III, A reanalysis using improved leaf models and a new canopy integration scheme, Remote Sens. Environ., 42, 187216, 1992.
  • Shinozaki, K., K. Yoda, K. Hozumi, T. Kira, A quantitative analysis of plant form — the pipe model theory, I, Basic analysis, Jpn. J. Ecol., 14, 97105, 1964.
  • Shugart, H. H., D. C. West, Size and pattern of simulated forest stands, For. Sci., 25, 120122, 1979.
  • Sperry, J. S., W. T. Pockman, Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis, Plant Cell Environ., 16, 279287, 1993.
  • Stedman, D. H., R. Shetter, The global budget of atmospheric nitrogen species, Trace Atmospheric Constituents: Properties, Transformation and Fates, S. S. Schwartz, 411454, John Wiley, New York, 1983.
  • Stewart, J. B., Modelling surface conductance of pine forest, Agric. For. Meteorol., 43, 1935, 1988.
  • , VEMAP Members, Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling, Global Biogeochem. Cycles, 9, 407437, 1995.
  • Walter, H., Vegetation of the Earth and Ecological Systems of the Geo-biosphere, Springer-Verlag, New York, 1985.
  • Warrilow, D. A., A. B. Sangster, A. Slingo, Modelling of land surface processes and their influence on European climate, Meteorol. Off., Bracknell, England, 1986.
  • White, A., M. G. R. Cannell, A. D. Friend, The high-latitude terrestrial carbon sink: a model analysis, Global Change Biology, 6, 227245, 2000.
  • Woodward, F. I., T. M. Smith, W. R. Emanuel, A global land primary productivity and phytogeography model, Global Biogeochem. Cycles, 9, 471490, 1995.
  • Xiao, X., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, R. G. Prinn, C. Wang, P. H. Stone, A. Sokolov, Transient climate change and net ecosystem production of the terrestrial biosphere, Global Biogeochem. Cycles, 12, 345360, 1998.