SEARCH

SEARCH BY CITATION

References

  • Bekki, S., K. S. Law, J. A. Pyle, Effect of ozone depletion on atmospheric CH4 and CO concentrations, Nature, 371, 595597, 1994.
  • Bergamaschi, P., C. Brühl, C. A. M. Brenninkmeijer, G. Saueressig, J. N. Crowley, J. U. Grooβ, H. Fischer, P. J. Crutzen, Implications of the large carbon kinetic isotope effect in the reaction CH4 + Cl for the 13C/12C ratio of stratospheric CH4, Geophys. Res. Lett., 23, 22272230, 1996.
  • Cantrell, C. A., R. E. Shetter, A. H. McDaniel, J. G. Calvert, J. A. Davidson, D. C. Lowe, S. C. Tyler, R. J. Cicerone, J. P. Greenberg, Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical, J. Geophys. Res., 95, 2245522462, 1990.
  • Chappellaz, J. A., I. Y. Fung, A. M. Thompson, The atmospheric CH4 increase since the Last Glacial Maximum, 1, Source estimates, Tellus, Ser. B, 45, 228241, 1993.
  • Craig, H., Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide, Geochim. Cosmochim. Acta, 12, 133149, 1957.
  • Craig, H., C. C. Chou, J. A. Welhan, C. M. Stevens, A. Engelkemeir, The isotopic composition of methane in polar ice cores, Science, 242, 15351539, 1988.
  • Crutzen, P. J., I. Aselmann, W. Seiler, Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans, Tellus, Ser. B, 38, 271284, 1986.
  • Dlugokencky, E. J., K. A. Masarie, P. M. Lang, P. P. Tans, L. P. Steele, E. G. Nisbet, A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992, Geophys. Res. Lett., 21, 4548, 1994.
  • Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P. Tans, K. A. Masarie, K. O. Lantz, S. Madronich, Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux, Geophys. Res. Lett., 23, 27612764, 1996.
  • Dlugokencky, E. J., K. A. Masarie, P. M. Lang, P. P. Tans, Continuing decline in the growth rate of the atmospheric methane burden, Nature, 393, 447450, 1998.
  • Etheridge, D. M., L. P. Steele, R. J. Francey, R. L. Langenfelds, Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climate variability, J. Geophys. Res., 103, 1597915993, 1998.
  • Francey, R. J., M. R. Manning, C. E. Allison, S. A. Coram, D. M. Etheridge, R. L. Langenfelds, D. C. Lowe, L. P. Steele, A history of δ13C in atmospheric CH4 from the Cape Grim Air Archive and Antarctic firn air, J. Geophys. Res., 104, 2363123643, 1999.
  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser, Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 1303313065, 1991.
  • Gupta, M., S. Tyler, R. Cicerone, Modeling atmospheric δ13CH4 and the causes of recent changes in atmospheric CH4 amounts, J. Geophys. Res., 101, 2292322932, 1996.
  • Hao, W. M., D. E. Ward, Methane production from global biomass burning, J. Geophys. Res., 98, 2065720661, 1993.
  • Hein, R., P. J. Crutzen, M. Heimann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 11, 4376, 1997.
  • Lassey, K. R., D. C. Lowe, C. A. M. Brenninkmeijer, A. J. Gomez, Atmospheric methane and its carbon isotopes in the southern hemisphere: Their time series and an instructive model, Chemosphere, 26, 95109, 1993.
  • Lassey, K. R., D. C. Lowe, G. W. Brailsford, A. J. Gomez, C. A. M. Brenninkmeijer, M. R. Manning, E. G. Nisbet, Atmospheric methane in the southern hemisphere: The recent decline in source strengths inferred from concentration and isotope data, Global Climate Change: Science, Policy, and Mitigation StrategiesC. V. Mathai, G. Stensland, 233248, Air and Waste Manage. Assoc., Pittsburg, Pa., 1994.
  • Lelieveld, J., P. J. Crutzen, F. J. Dentener, Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus, Ser. B, 50, 128150, 1998.
  • Lowe, D. C., C. A. M. Brenninkmeijer, S. C. Tyler, E. J. Dlugokencky, Determination of the isotopic composition of atmospheric methane and its application in the Antarctic, Geophys. Res., 96, 1544515467, 1991.
  • Lowe, D. C., C. A. M. Brenninkmeijer, G. W. Brailsford, K. R. Lassey, A. J. Gomez, E. G. Nisbet, Concentration and 13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources, J. Geophys. Res., 99, 1691316925, 1994.
  • Lowe, D. C., M. R. Manning, G. W. Brailsford, A. M. Bromley, The 1991–1992 atmospheric methane anomaly: Southern hemisphere 13C decrease and growth rate fluctuations, Geophys. Res. Lett., 24, 857860, 1997.
  • Lowe, D. C., M. R. Manning, G. W. Brailsford, A. M. Bromley, D. Ferretti, Latitudinal gradients of 13C in atmospheric methane in the Pacific Ocean region: Implications for interhemispheric transport, Isotope Techniques in the Study of Environmental Change, 4956, Int. Atomic Energy Agency, Vienna, 1998.
  • Lowe, D. C., et al., Shipboard determinations of the distribution of 13C in atmospheric methane in the Pacific, J. Geophys. Res., 1999.
  • Lowry, D., P. O. O'Brien, E. G. Nisbet, N. D. Rata, δ13C of atmospheric methane: An integrated technique for constraining emission sources in urban and background air, Isotope Techniques in the Study of Environmental Change, 5767, Int. Atomic Energy Agency, Vienna, 1998.
  • Prather, M. J., Lifetimes and eigenstates in atmospheric chemistry, Geophys. Res. Lett., 21, 801804, 1994.
  • Prather, M., R. Derwent, D. Ehhalt, P. Fraser, E. Sanhueza, andX. Zhou, Other trace gases and atmospheric chemistry, inClimate Change 1994: Radiative Forcing of Climate Change, edited byJ. T. Houghton, et al.,chap. 2, pp.73126,Cambridge University Press,New York,1995.
  • Quay, P. D., et al., Carbon isotopic composition of atmospheric CH4: fossil and biomass burning source strengths, Global Biogeochem. Cycles, 5, 2547, 1991.
  • Schimel, D., et al.,Radiative forcing of climate change, inClimate Change 1995: The Science of Climate Change, edited byJ. T. Houghton, et al.,chap. 2, pp.65131,Cambridge University Press,New York,1996.
  • Senum, G. I., J. S. Gaffney, A reexamination of the tropospheric methane cycle: geophysical implications, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., 32E. T. Sundquist, W. S. Broecker, 6169, AGU, Washington D. C., 1985.
  • Stevens, C. M., Atmospheric methane, Chem. Geol., 71, 1121, 1988.
  • Stevens, C. M., A. Engelkemeir, Stable carbon isotopic composition of methane from some natural and anthropogenic sources, J. Geophys. Res., 93, 725733, 1988.
  • Subak, S., Methane from the house of Tudor and the Ming Dynasty: Anthropogenic emissions in the sixteenth century, Chemosphere, 29, 843854, 1994.
  • Tans, P. P., A note on isotope ratios and the global atmospheric methane budget, Global Biogeochem. Cycles, 11, 7781, 1997.
  • Tyler, S. C., The global methane budget, Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and HalomethanesJ. E. Rogers, W. B. Whitman, 738, Am. Soc. for Microbiol., Washington D. C., 1991.
  • Tyler, S. C., P. M. Crill, G. W. Brailsford, 13C/12C fractionation of methane during oxidation in a temperate forested soil, Geochim. Cosmochim. Acta, 58, 16251633, 1994.
  • Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J. S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W. Broecker, Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon, Science, 245, 286290, 1989.