Prediction of the number of cloud droplets in the ECHAM GCM


  • Ulrike Lohmann,

  • Johann Feichter,

  • Catherine C. Chuang,

  • Joyce E. Penner


This article is corrected by:

  1. Errata: Correction to “Prediction of the number of cloud droplets in the ECHAM GCM” by Ulrike Lohmann et al. Volume 104, Issue D20, 24557–24563, Article first published online: 27 October 1999


In this paper a prognostic equation for the number of cloud droplets (CDNC) is introduced into the ECHAM general circulation model. The initial CDNC is based on the mechanistic model of Chuang and Penner [1995], providing a more realistical prediction of CDNC than the empirical method previously used. Cloud droplet nucleation is parameterized as a function of total aerosol number concentration, updraft velocity, and a shape parameter, which takes the aerosol composition and size distribution into account. The total number of aerosol particles is obtained as the sum of marine sulfate aerosols produced from dimethyl sulfide, hydrophylic organic and black carbon, submicron dust, and sea-salt aerosols. Anthropogenic sulfate aerosols only add mass to the preexisting aerosols but do not form new particles. The simulated annual mean liquid water path, column CDNC, and effective radius agree well with observations, as does the frequency distributions of column CDNC for clouds over oceans and the variations of cloud optical depth with effective radius.