SEARCH

SEARCH BY CITATION

References

  • Andres, R. J., A. D. Kasgnoc, A time-averaged inventory of subaerial vulcanic sulfur emissions, J. Geophys. Res., 103, 2525125261, 1998.
  • Bates, T. S., K. C. Kelly, J. E. Johnson, R. H. Gammon, A reevaluation of the open ocean source of methane to the atmosphere, J. Geophys. Res., 101, 69536961, 1996.
  • Benkovitz, C. M., M. T. Scholtz, J. Pacyna, L. Tarrason, J. Dignon, E. C. Voldener, P. A. Spiro, J. A. Logan, T. E. Graedel, Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 2923929253, 1996.
  • Bouwman, A. F., D. S. Lee, W. A. H. Asman, F. J. Dentener, K. W. van derHoek, J. G. J. Olivier, A global high-resolution emission inventory for ammonia, Global Biogeochem. Cycles, 11, 561587, 1997.
  • Brent, R. P., Algorithms for Minimization Without Derivativeschap. 5, 78, Prentice-Hall, Englewood Cliffs, N. J., 1973.
  • Brown, M., Deduction of fluxes of source gases using an objective inversion algorithm and a chemical transport model, J. Geophys. Res., 98, 1263912660, 1993.
  • Brown, M., The singular value decomposition method applied to the deduction of the emissions and the isotopic composition of atmospheric methane, J. Geophys. Res., 100, 1142511446, 1995.
  • Brühl, C., P. J. Crutzen, Scenarios of possible change in tropospheric temperatures and ozone concentrations due to man's activities, estimated with a one dimensional coupled photochemical climate model, Clim. Dyn., 2, 173202, 1988.
  • Brühl, C., P. J. Crutzen, MPIC two-dimensional model, NASA Ref. Publ., 1292, 103104, 1993.
  • Butler, J. H., J. W. Elkins, T. M. Thompson, B. D. Hall, T. H. Swanson, V. Koropalov, Oceanic consumption of CH3CCl3: Implications for tropospheric OH, J. Geophys. Res., 96, 2234722355, 1991.
  • Cao, M. K., J. B. Dent, O. W. Heal, Methane emissions from China's paddyland, Agr. Ecosyst. Environ., 55, 129137, 1995.
  • Crutzen, P. J., The role of methane in atmospheric chemistry and climate, Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction: Proceedings of the Eighth International Symposium on Ruminant PhysiologyW. V. Engelhardt, S. Leonhardt-Marek, G. Breves, D. Giesecke, 291315Ferdinant Enke Verl., Stuttgart, Germany, 1995.
  • Dlugokencky, E. J., K. A. Masarie, P. M. Lang, P. P. Tans, E. G. Nisbet, A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992, Geophys. Res. Lett., 21, 4548, 1994a.
  • Dlugokencky, E. J., L. P. Steele, P. M. Lang, K. A. Masarie, The growth rate and distribution of atmospheric methane, J. Geophys. Res., 99, 1702117043, 1994b.
  • Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, K. A. Masarie, Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux, Geophys. Res. Lett., 23, 27612764, 1996.
  • Dlugokencky, E. J., K. A. Masarie, P. M. Lang, P. P. Tans, Continuing decline in the growth rate of the atmospheric methane burden, Nature, 393, 447450, 1998.
  • Dong, H. M., L. Erda, Y. Li, M. J. Rao, Q. C. Yang, An estimation of methane emissions from agricultural activities in China, Ambio, 25, 292296, 1996.
  • Enting, I. G., C. M. Trudinger, R. J. Francey, A synthesis inversion of the concentration and δ13C of atmospheric CO2, Tellus, Ser. B, 47, 3552, 1995.
  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser, Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 1303313065, 1991.
  • Giering, R., Tangent linear and adjoint model compiler, Users Manual, Max Planck Inst. for Meteorol., Hamburg, Germany, 1996.
  • Guenther, A., et al., A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 88738892, 1995.
  • Hao, W. M., M. H. Liu, P. J. Crutzen, Estimates of the annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics based on the fao statistics for the period 1975–1980, Fire in the Tropical BiotaJ. Goldhammer, 440462, Springer-Verlag, New York, 1991.
  • Hartley, D., R. Prinn, Feasability of determining surface emissions of trace gases using an inverse method in a three-dimensional chemical transport model, J. Geophys. Res., 98, 51835197, 1993.
  • Heimann, M., The global atmospheric tracer model TM2Tech. Rep. 10 ISSN 0940-9327Dtsch. Klimarechenzentrum, Hamburg, Germany, 1995.
  • Heimann, M., C. D. Keeling, A three-dimensional model of atmospheric CO2 transport based on observed winds, model description and simulated tracer experiments, Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., 55D. H. Peterson, 237275, AGU, Washington, D. C., 1989.
  • Hein, R., Inverse Modellierung des atmosphärischen Methan-Kreislaufs unter Verwendung eines drei-dimensionalen Modells des Transports und der Chemie der Troposphäre, Ph.D. thesis,Fachbereich Geowiss. der Univ. Hamburg,Hamburg, Germany,1994.
  • Hein, R., P. J. Crutzen, M. Heimann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 11, 4376, 1997.
  • Hertel, O., R. Berkowicz, J. Christensen, O. Hov, Test of two numerical schemes for use in atmospheric transport-chemistry models, Atmos. Environ., Part A, 27, 25912611, 1993.
  • Houweling, S., F. J. Dentener, J. Lelieveld, The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry, J. Geophys. Res., 103, 1067310696, 1998.
  • Huang, Y., R. L. Sass, F. M. Fisher, Methane emissions from Texas rice paddy soils, 1, Quantative multi-year dependence of CH4 emissions on soil, cultivar and grain yield, Global Change Biol., 3, 479489, 1997.
  • , IPCC, Climate Change: The IPCC Scientific AssessmentJ. T. Houghton, et al., Cambridge Univ. Press, New York, 1990.
  • , IPCC, Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios, Climate Change 1994J. T. Houghton, et al., Cambridge Univ. Press, New York, 1994.
  • Kaminski, T., M. Heimann, R. Giering, Sensitivity of the seasonal cycle of CO2 at remote monitoring stations with respect to seasonal surface exchange fluxes determined with the adjoint of an atmospheric transport model, Phys. Chem. Earth, 21, 457462, 1996.
  • Kaminski, T., M. Heimann, R. Giering, A coarse grid three-dimensional global inverse model of the atmospheric transport, 1, Adjoint model and Jacobian matrix, J. Geophys. Res., 1999a.
  • Kaminski, T., M. Heimann, R. Giering, A coarse grid three-dimensional global inverse model of the atmospheric transport, 2, Inversion of the transport of CO2 in the 1980s, J. Geophys. Res., 1999b.
  • Kanakidou, M., F. J. Dentener, P. J. Crutzen, A global three-dimensional study of the fate of HCFCs and HFC-134a in the troposphere, J. Geophys. Res., 100, 1878118802, 1995.
  • Keeling, C. D., S. C. Piper, M. Heimann, A three dimensional model of the atmospheric CO2 transport based on observed winds, 4, mean annual gradients and interannual variations, Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., 55D. H. Peterson, 305363, AGU, Washington, D. C., 1989.
  • Kern, J. S., D. Bachelet, M. Tolg, Organic matter inputs and methane emissions from soils in major rice growing regions of China, Soils and Global Change: Advances in Soil ScienceR. Lal, E. Levine, J. Kimble, B. A. Stewart, CRC Lewis Publishers, New York, 1995.
  • Kern, J. S., Z. Gong, G. Zhang, H. Zhuo, G. Luo, Spatial analysis of methane emissions from paddy soils in China and the potential for emissions reduction, Nutrient Cycl. Agro-Ecosyst., 49, 181195, 1997.
  • Kreileman, G. J. J., Documentation of a geographically explicit dynamic carbon cycle model, RIVM reportNatl. Inst. for Public Health and the Environ. (RIVM), Bilthoven, The Netherlands, 1996.
  • Krol, M., P. J. vanLeeuwen, J. Lelieveld, Global OH trend inferred from methylchloroform measurements, J. Geophys. Res., 103, 10,69710,711, 1998.
  • Lacroix, A. V., Unaccounted-for sources of fossil and isotopically-enriched methane and their contribution to the emissions inventory: A review and synthesis, Chemosphere, 26, 507557, 1993.
  • Lambert, G., S. Schmidt, Reevaluation of the oceanic flux of methane: Uncertainties and long term variations, Chemosphere, 26, 579589, 1993.
  • Law, R., I. Simmonds, The sensitivity of deduced CO2 sources and sinks to variations in transport and imposed surface concentrations, Tellus, Ser. B, 48, 613625, 1996.
  • Lelieveld, J., P. J. Crutzen, F. J. Dentener, Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus, Ser. B, 50, 128150, 1998.
  • Louis, J. F., A parametric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17, 187202, 1979.
  • Matthews, E., Global vegetation and land use: New high-resolution data bases for climate studies, J. Clim. Appl. Meteorol., 22, 474487, 1983.
  • Matthews, E., I. Fung, Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 6186, 1987.
  • Matthews, E., I. Fung, J. Lerner, Methane emission from rice cultivation: Geographic and seasonal distribution of cultivated areas and emissions, Global Biogeochem. Cycles, 5, 324, 1991.
  • Midgley, P. M., The production and release to the atmosphere of 1,1,1-trichloroethane (methyl chloroform), Atmos. Environ., 23, 26632665, 1989.
  • Midgley, P. M., A. McCulloch, The production and global distribution of emissions to the atmosphere of 1,1,1-trichloroethane (methyl chloroform), Atmos. Environ., 29, 16011608, 1995.
  • Mulquiney, J. E., J. A. Norton, A new inverse method for trace gas flux estimation: State-space model identification and constraints, J. Geophys. Res., 103, 14171427, 1998.
  • Mulquiney, J. E., J. A. Taylor, A. J. Jakeman, J. P. Norton, R. G. Prinn, A new inverse method for trace gas flux estimation: Application to tropospheric CFCl3 fluxes, J. Geophys. Res., 103, 14291442, 1998.
  • Olivier, J. G. J., et al., Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone depleting substances for all anthropogenic and most natural sources on a per country basis on 1° × 1° gridRIVM Rep. 771060 002/TNO MEP Rep. R96/119Natl. Inst. for Public Health and the Environ., Bilthoven, The Netherlands, 1996.
  • Olson, J. S., J. A. Watts, L. J. Allison, Carbon in live vegetation of major world ecosystems, Ornl, 5862, Oak Ridge Lab., Oak Ridge, Tenn., 1983.
  • Plumb, R. A., X. Zheng, Source determination from trace gas observations: An orthogonal function approach and results for long-lived gases with surface sources, J. Geophys. Res., 101, 1856918585, 1996.
  • Prather, M., M. McElroy, S. Wofsy, G. Russell, D. Rind, Chemistry of the global troposphere: Fluorocarbons as tracers of air motion, J. Geophys. Res., 92, 65796613, 1987.
  • Prinn, R. G., et al., Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990, J. Geophys. Res., 97, 24452461, 1992.
  • Prinn, R. G., R. F. Weiss, B. R. Miller, F. N. Alyea, D. M. Cunnold, D. E. Hartley, P. B. Fraser, P. G. Simmonds, Global weighted-average concentration and trend of OH based on 15 years of ALE/GAGE CH3CCl3 dataJoint Meeting on Global Atmospheric ChemistryInt. Assoc. of Meteorol. and Atmos. Phys.Fuji-Yoshida, Jpn., 1994.
  • Prinn, R. G., R. F. Weiss, B. R. Miller, J. Huang, F. N. Alyea, D. M. Cunnold, P. B. Fraser, D. E. Hartley, P. G. Simmonds, Atmospheric trends and lifetime of trichloro-ethane and global average hydroxyl radical concentrations based on 1978–1994 ALE/GAGE measurements, Science, 269, 187192, 1995.
  • Ramonet, M., P. Monfray, CO2 baseline concept in 3-D atmospheric transport models, Tellus, Ser. B, 48, 502520, 1996.
  • Rayner, P. J., I. G. Enting, C. M. Trudinger, Optimizing the CO2 observing network for constraining sources and sinks, Tellus, Ser. B, 48, 433444, 1996.
  • Russell, G., J. Lerner, A new finite-differencing scheme for the tracer transport equation, J. Appl. Meteorol., 20, 14831498, 1981.
  • Sanderson, M. G., Biomass of termites and their emissions of methane and carbon dioxide: A global database, Global Biogeochem. Cycles, 10, 543557, 1996.
  • Tans, P. P., A note on isotopic ratios and the global atmospheric methane budget, Global Biogeochem. Cycles, 11, 7781, 1997.
  • Tarantola, A., Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation, Elsevier, New York, 1987.
  • Tiedke, M., A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev., 117, 17791800, 1989.
  • Trampert, J., R. Snieder, Model estimations biased by truncated expansions: Possible artifacts in seismic tomography, Science, 271, 12571260, 1996.
  • vanMinnen, J. G., K. Klein Goldewijk, R. Leemans, The importance of feedback processes and vegetation transition in the terrestrial carbon cycle, J. Biogeogr., 22, 805814, 1996.
  • Warneck, P., Chemistry of the Natural Atmosphere, Int. Geophys. Ser., 41, 757, Academic, San Diego, Calif., 1988.
  • Yao, H., Y. B. Zhuang, Z. L. Chen, Estimation of methane emission from rice paddies in mainland China, Global Biogechem. Cycles, 10, 641649, 1996.
  • Yienger, J. J., H. Levy, Empirical model of global soil-biogenic NOx emissions, J. Geophys. Res., 100, 1144711464, 1995.