SEARCH

SEARCH BY CITATION

References

  • Andres, R. J., G. Marland, S. Bischof, The Carbon Isotopic Composition of Fossil Fuel EmissionsInt. Union of Geod. and Geophys. (IUGG) XXI General AssemblyBoulder, Colo., 1995.
  • Bacastow, R., C. D. Keeling, Atmospheric carbon dioxide and radiocarbon on the natural carbon cycle, Carbon and the BiosphereG. M. Woodwell, E. V. Pecan, 86135, U.S. At. Energy Comm., Washington, D. C., 1973.
  • Brewer, P. G., Direct observation of the oceanic CO2 increase, Geophys. Res. Lett., 5, 9971000, 1978.
  • Broecker, W. S., How to Build a Habitable Planet, Eldigio Press, Lamont-Doherty Geol. Obs., Palisades, N. Y., 1985.
  • Broecker, W. S., T. H. Peng, Tracers in the Sea, Eldegio Press, Lamont-Doherty Geol. Obs., Palisades, N. Y., 1982.
  • Broecker, W. S., T. H. Peng, Evaluation of the 13C constraint on the uptake of fossil fuel CO2 by the ocean, Global Biogeochem. Cycles, 7, 619626, 1993.
  • Broecker, W. S., T.-H. Peng, Stratospheric contribution to the global bomb radiocarbon inventory: Model versus observation, Global Biogeochem. Cycles, 8, 377384, 1994.
  • Broecker, W. S., T.-H. Peng, R. Engh, Modeling the carbon system, Radiocarbon, 22, 565580, 1980.
  • Broecker, W. S., T.-H. Peng, G. Ostlund, M. Stuiver, The distribution of bomb radiocarbon in the ocean, J. Geophys. Res., 90, 69536970, 1985.
  • Broecker, W. S., S. Sutherland, W. Smethie, T.-H. Peng, G. Ostlund, Oceanic radiocarbon: Separation of the natural and bomb components, Global Biogeochem. Cycles, 9, 263288, 1995.
  • Bruno, M., F. Joos, Terrestrial carbon storage during the past 200 years: A Monte Carlo analysis of CO2 data from ice core and atmospheric measurements, Global Biogeochem. Cycles, 11, 111124, 1997.
  • Bullister, J. L., Chlorofluorocarbons as time-dependent tracers in the ocean, Oceanography, 2, 1217, 1989.
  • Chen, G.-T., F. J. Millero, Gradual increase of oceanic CO2, Nature, 277, 205206, 1979.
  • Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, R. J. Francey, A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2, Science, 269, 10981102, 1995.
  • Craig, H., The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea, Tellus, 9, 117, 1957.
  • Doney, S. C., W. J. Jenkins, H. G. Ostlund, A tritium budget for the North Atlantic, J. Geophys. Res., 98, 1806918081, 1993.
  • Druffel, E. M., Radiocarbon in annual coral rings of Florida and Belize, Radiocarbon, 22, 363371, 1980.
  • Druffel, E. M., Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean, Geophys. Res. Lett., 8, 5962, 1981.
  • Druffel, E. M., L. M. Benavides, Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge, Nature, 321, 5861, 1986.
  • Druffel, E. M., T. W. Linick, Radiocarbon in annual coral rings of Florida, Geophys. Res. Lett., 5, 913916, 1978.
  • Duran, M. A., B. S. White, Bayesian estimation applied to effective heat transfer coefficients in a packed bed, Chem. Eng. Sci., 50, 495510, 1995.
  • Enting, I. G., G. I. Pearman, Description of a one-dimensional carbon cycle model calibrated by the techniques of constrained inversion, Tellus, Ser. B, 39, 459476, 1987.
  • , Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/ Land AnalysesI. G. Enting, T. M. L. Wigley, M. Heimann, 120, Commonw. Sci. and Ind. Res. Organ., Melbourne, Victoria, Australia, 1994.
  • Friedli, H., H. Lotscher, H. Oeschger, U. Siegenthaler, B. Stauffer, Ice core record of the 13C/12C ratio of atmospheric carbon dioxide in the past two centuries, Nature, 324, 237238, 1986.
  • Gruber, N., J. L. Sarmiento, T. F. Stocker, An improved method for detecting anthropogenic CO2 in the oceans, Global Biogeochem. Cycles, 10, 809837, 1996.
  • Harrison, K., W. Broecker, G. Bonani, A strategy for estimating the impact of CO2 fertilization on soil carbon, Global Biogeochem. Cycles, 7, 6980, 1993.
  • Harvey, L. D. D., Effect of model structure on the response of terrestrial biosphere models to CO2 and temperature increases, Global Biogeochem. Cycles, 3, 137153, 1989a.
  • Harvey, L. D. D., Managing atmospheric CO2, Clim. Change, 15, 343381, 1989b.
  • Heimann, M., E. Maier-Reimer, On the relations between the oceanic uptake of CO2 and its carbon isotopes, Global Biogeochem. Cycles, 10, 89110, 1996.
  • Hesshaimer, V., M. Heimann, I. Levin, Radiocarbon evidence for a smaller ocean carbon dioxide sink than previously believed, Nature, 370, , 1994.
  • Hoffert, M. I., A. J. Callegari, C.-T. Hseih, A box-diffusion carbon cycle model with upwelling, polar bottom water formation and a marine biosphere, Carbon Cycle Modeling, SCOPE 16B. Bolin, 287305, John Wiley, New York, 1981.
  • Jain, A. K., H. S. Kheshgi, D. J. Wuebbles, Integrated science model for assessment of climate change, UCRL-JC-116526, Lawrence Livermore Natl. Lab., Livermore, Calif., 1994.
  • Jain, A. K., H. S. Kheshgi, M. I. Hoffert, D. J. Wuebbles, Distribution of radiocarbon as a test of global carbon cycle models, Global Biogeochem. Cycles, 9, 153166, 1995.
  • Jain, A. K., H. S. Kheshgi, D. J. Wuebbles, A globally aggregated reconstruction of cycles of carbon and its isotopes, Tellus, Ser. B, 48, 583600, 1996.
  • Jain, A. K., H. S. Kheshgi, D. J. Wuebbles, Is there an imbalance in the global budget of bomb-produced radiocarbon?, J. Geophys. Res., 102, 13271333, 1997.
  • Joos, F., M. Bruno, R. Fink, U. Siegenthaler, T. Stocker, C. Le Quéré, J. L. Sarmiento, An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake, Tellus, Ser. B, 48, 397417, 1996.
  • Keeling, C. D., The carbon dioxide cycle: Reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants, Chemistry of the Lower AtmosphereS. I. Rasool, 251329, Plenum, New York, 1973.
  • Keeling, C. D., The modeling of rare isotopic carbon with regard to notation, Carbon Cycle Modeling, SCOPE 16B. Bolin, 8994, John Wiley, New York, 1981.
  • Keeling, C. D., T. Whorf, Trends in atmospheric CO2 since the eruption of Pinatubo in 1991, 4th International CO2 Conference, 6768World Meteorol. Organ., Geneva, 1993.
  • Keeling, C. D., W. G. Mook, P. Tans, Recent trends in the 13C/12C ratio of atmospheric carbon dioxide, Nature, 277, 121123, 1979.
  • Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, H. Roeloffzen, A three-dimensional model of atmospheric CO2 transport based on observed winds, 1, Analysis of observational data, Aspects of Climate Variability in the Pacific and Western Americas, Geophys. Monogr. SetD. H. Peterson, 165236, AGU, Washington, D. C., 1989.
  • Keeling, C. D., T. P. Whorf, M. Wahlen, J. v. d. Pilcht, Interannual extremes in the rates of rise of atmospheric carbon dioxide since 1980, Nature, 375, 666670, 1995.
  • Keeling, R. F., S. C. Piper, M. Helmann, Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration, Nature, 381, 218221, 1996.
  • Kheshgi, H. S., B. S. White, Modelling ocean carbon cycle with a nonlinear convolution model, Tellus, Ser. B, 48, 312, 1996.
  • Kheshgi, H. S., M. I. Hoffert, B. P. Flannery, Marine biota effects on the compositional structure of the world oceans, J. Geophys. Res., 96, 49574969, 1991.
  • Kheshgi, H. S., A. K. Jain, D. J. Wuebbles, Accounting for the missing carbon sink with the CO2 fertilization effect, Clim. Change, 33, 3162, 1996.
  • Kheshgi, H. S., A. K. Jain, D. J. Wuebbles, Analysis of proposed CO2 emission reductions in the context of stabilization of CO2 concentrationin Proceedings of the A&WMA 90th Annual Meeting and ExhibitionAir & Waste Manage. Assoc.Toronto, Ontario, Canada, 1997.
  • Kroopnic, P. M., The distribution of 13C of σCO2 in the world oceans, Deep Sea Res., 32, 5784, 1985.
  • Maier-Reimer, E., Geochemical tracers in an ocean general circulation model, Preindustrial tracer distributions, Global Biogeochem. Cycles, 7, 645677, 1993.
  • Maier-Reimer, E., K. Hasselmann, Transport and storage of CO2 in the ocean—An inorganic ocean-circulation carbon cycle model, Clim. Dyn., 2, 6390, 1987.
  • Marland, G., R. J. Andres, T. A. Boden, Global, regional, and national CO2 emissions, Trends 93: A Compendium of Data on Global ChangeT. A. Boden, et al., 505584, ORNL/ CDIAC-65, Oak Ridge Natl. Lab., Oak Ridge, Tenn., 1994.
  • Mensh, M., A. Simon, R. Bayer, Tritium and CFC input functions for the Weddell Sea, J. Geophys. Res., 103, 1592315937, 1998.
  • Neftel, A., E. Moor, H. Oeschger, B. Stauffer, Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature, 315, 4547, 1985.
  • Nozaki, Y., D. M. Rye, K. K. Turekian, R. E. Dodge, A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral, Geophys Res. Lett., 5, 825828, 1978.
  • O'Brien, K., Secular variations in the production of cosmogenic isotopes in the Earth's atmosphere, J. Geophys. Res., 84, 423431, 1979.
  • Oeschger, H., U. Siegenthaler, U. Schotterer, A. Guglemann, A box-diffusion model to study the carbon dioxide exchange in nature, Tellus, 27, 168192, 1975.
  • Press, S. J., Bayesian Statistics: Principles, Models, and Applications, John Wiley, New York, 1989.
  • Quay, P. D., B. Tilbrook, C. S. Wong, Oceanic uptake of fossil fuel CO2: Carbon-13 evidence, Science, 256, 7479, 1992.
  • Sarmiento, J. L., U. Siegenthaler, J. C. Orr, A perturbation simulation of CO2 uptake in an ocean general circulation model, J. Geophys. Res., 97, 36213645, 1992.
  • Schimel, D., I. Enting, M. Heimann, T. Wigley, D. Raynaud, D. Alves, U. Siegenthaler, CO2 and the carbon cycle, Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission ScenariosJ. T. Houghton, et al., 3571, Cambridge Univ. Press, New York, 1995.
  • Schimel, D., D. Alves, I. Enting, M. Helmann, F. Joos, D. Raynaud, T. Wigley, CO2 and the carbon cycle, Climate Change 1995: The Science of Climate Change: Contribution of WGI to the Second Assessment Report of the IPCCJ. T. Houghton, et al., 6586, Cambridge Univ. Press, New York, 1996.
  • Schlesinger, W., Biogeochemistry: An Analysis of Global Change, Academic, San Diego, Calif., 1991.
  • Shaffer, G., J. L. Sarmiento, Biogeochemical cycling in the global ocean, 1, A new, analytical model with continuous vertical resolution and high-latitude dynamics, J. Geophys. Res., 100, 26592672, 1995.
  • Siegenthaler, U., Uptake of excess CO2 by an outcrop-diffusion model of the ocean, J. Geophys. Res., 88, 35993608, 1983.
  • Siegenthaler, U., F. Joos, Use of a simple model for studying oceanic tracer distributions and the global carbon cycle, Tellus, Ser. B, 44, 186207, 1992.
  • Siegenthaler, U., K. O. Münnich, 13C/12C fractionation during CO2 transfer from air to sea, Carbon Cycle Modeling, SCOPE 16B. Bolin, 249257, John Wiley, New York, 1981.
  • Siegenthaler, U., H. Oeschger, Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data, Tellus, Ser. B, 39, 140154, 1987.
  • Siegenthaler, U., J. L. Sarmiento, Atmospheric carbon dioxide and the ocean, Nature, 365, 119125, 1993.
  • Stuiver, M., P. D. Quay, Changes in atmospheric 14C attributed to variable Sun, Science, 207, 1119, 1980.
  • Stuiver, M., P. D. Quay, Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability, Earth Planet. Sci. Lett., 53, 349362, 1981.
  • Suess, H. E., Radiocarbon concentration in modern wood, Science, 122, 415417, 1955.
  • Sundquist, E. T., Geological perspectives on carbon dioxide and the carbon cycle, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. SerE. T. Sundquist, W. S. Broecker, 559, AGU, Washington, D. C., 1985.
  • Takahashi, T., W. S. Broecker, A. E. Bainbridge, Supplement to the alkalinity and total carbon dioxide concentration in the world oceans, Carbon Cycle Modeling, SCOPE 16B. Bolin, 159200, John Wiley, New York, 1981.
  • Tans, P., Carbon-13 and Carbon-14 in Trees and the Atmospheric CO2 Increases, Univ. of Groningen, Netherlands, 1978.
  • Tans, P., 13C/12C of industrial CO2, Carbon Cycle Modeling, SCOPE 16B. Bolin, 127129, John Wiley, New York, 1981a.
  • Tans, P. P., A compilation of bomb 14C data for use in global carbon cycle models, Carbon Cycle Modeling, Scope 16B. Bolin, 131158, John Wiley, New York, 1981b.
  • Tans, P. P., J. A. Berry, R. F. Keeling, Oceanic 13C/12C observations: A new window on ocean CO2 uptake, Global Biogeochem. Cycles, 7, 353368, 1993.
  • Toggweiler, J. R., K. Dixon, K. Bryan, Simulations of radiocarbon in a coarse resolution world ocean model, 1, Distributions of bomb-produced carbon-14, J. Geophys. Res., 94, 82438264, 1989.
  • , United Nations (UN), United Nations Framework Convention on Climate Change, New York, 1992.
  • Volk, T., Multi-property modeling of the marine biosphere in relation to global climate and carbon cycles, Ph.D. thesis,N.Y. Univ., Univ. Microfilms Int.,Ann Arbor, Mich.,1984.
  • Volk, T., M. I. Hoffert, Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. SerE. Sundquist, W. S. Broecker, 91110, AGU, Washington, D. C., 1985.
  • Volk, T., Z. Liu, Controls of CO2 sources and sinks in the Earth scale surface ocean: Temperature and nutrients, Global Biogeochem. Cycles, 2, 7389, 1988.
  • Watson, R. T., H. Rodhe, H. Oeschger, U. Siegenthaler, Greenhouse gases and aerosols, Climate Change, The IPCC Scientific AssessmentJ. T. Houghton, et al., 140, Cambridge Univ. Press, Cambridge, New York, 1990.
  • Wigley, T. M. L., Balancing the carbon budget, Implications for projections of future carbon dioxide concentration changes, Tellus, Ser. B, 45, 409425, 1993.