SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. References

An adjoint sensitivity analysis is performed within a regional episodic chemical transport model covering the Pacific Basin. The analysis is performed with respect to the concentration over Hawaii of a soluble and insoluble chemically inert species, with the same emissions as NOx. The sensitivity is examined at times of elevated tracer mixing ratio at 300, 680, and 900 mbar. The sensitivity to the average mixing ratio at 680 mbar is also examined. The meteorological conditions of April and May 1992 are used for the transport. The adjoint analysis includes the effect of the entire model transport function. It provides a method to analyze the transport of modeled emissions to Hawaii, including the effect of various emission regions, and the associated transport pathways and timescales. The boundary layer mixing ratio at Hawaii is most sensitive to local emissions, with emissions from North America and Asia also contributing to the modeled concentration. In the free troposphere the concentration over Hawaii is most sensitive to emissions from Asia. The adjoint also allows modeled processes to be ranked by their importance in determining the concentration of a species at a particular location. At Hawaii, emissions are ranked first and second in order of importance for the insoluble and soluble species, respectively. For the soluble species the solution is most sensitive to the modeled wet deposition by nonconvective rain. Free tropospheric mixing is generally next in order of importance. Deep convection is important in some locations, particularly for the 300 mbar concentrations. Boundary layer processes, including dry deposition, are generally not important to the free tropospheric solution at Hawaii.

References

  1. Top of page
  2. Abstract
  3. References
  • Anthes, R. A., T. T. Warner, Development of hydrodynamical models suitable for air pollution and other mesometeorological studies, Mon. Weather Rev., 106, 10451078, 1978.
  • Atlas, E. L., B. A. Ridley, The Mauna Loa Observatory Photo-chemistry Experiment: Introduction, J. Geophys. Res., 101, 1453114541, 1996.
  • Davis, D. D., et al., Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991, J. Geophys. Res., 101, 21112134, 1996.
  • Ehhalt, D. H., F. Rohrer, A. Wahner, Sources and distribution of NOx in the upper troposphere at northern midlatitudes, J. Geophys. Res., 97, 37253738, 1992.
  • Giorgi, F., W. L. Chameides, The rainout parameterization in a photochemical model, J. Geophys. Res., 90, 78727880, 1985.
  • Godunov, S. K., A difference scheme for numerical computation of discontinuous solutions of equations in fluid dynamics, Math. Sbornik, 47, 271, 1959.
  • Grell, G. A., Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Weather Rev., 121, 764787, 1993.
  • Grell, G. A., J. Dudhia, D. R. Stauffer, A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5)Tech. Note NCAR/TN-398+IA, 116Natl. Cent. for Atmos. Res., Boulder, Colo., 1993.
  • Hall, M. C. G., D. G. Caccuci, M. E. Schlesinger, Sensitivity analysis of a radiative convective model by the adjoint method, J. Atmos. Sci., 39, 20832050, 1982.
  • Hall, T. M., R. A. Plumb, Age as a diagnostic of stratospheric transport, J. Geophys. Res., 99, 10591070, 1994.
  • Hecht, M. W., W. R. Holland, P. J. Rasch, Upwind-weighted advection schemes for ocean tracer transport: An evaluation in a passive tracer context, J. Geophys. Res., 100, 2076320778, 1995.
  • Hess, P. G., N. Srimani, S. J. Flocke, Trajectories and related variations in the chemical composition of air for the Mauna Loa Observatory during 1991 and 1992, J. Geophys. Res., 101, 1454314568, 1996.
  • Hoell, J. M., D. D. Davis, S. C. Liu, R. E. Newell, M. Shipman, H. Akimoto, R. J. McNeal, R. J. Bendura, J. W. Drewry, The Pacific Exploratory Mission-West A (PEM-West A): September-October 1991, J. Geophys. Res., 101, 16411653, 1996.
  • Hoell, J. M., D. D. Davis, S. C. Liu, R. E. Newell, H. Akimoto, R. J. McNeal, R. J. Bendura, The Pacific Exploratory Mission-West Phase B: February-March, 1994, J. Geophys. Res., 102, 2822328239, 1997.
  • Holtslag, A. A. M., C.-H. Moeng, Eddy diffusivity and counter-gradient transport in the convective atmospheric boundary layer, J. Atmos. Sci., 48, 16901698, 1991.
  • Kaminski, T., R. Giering, M. Heimann, Sensitivity of the seasonal cycle of CO2 at remote monitoring stations with respect to seasonal surface exchange fluxes determined with the adjoint of an atmospheric transport model, Phys. Chem. Earth, 21, 457463, 1996.
  • Kaminski, T., M. Heimann, R. Giering, A coarse grid three-dimensional global inverse model of the atmospheric transport, 1, Adjoint model and Jacobian matrix, J. Geophys. Res., 104, 1853518553, 1999a.
  • Kaminski, T., M. Heimann, R. Giering, A coarse grid three-dimensional global inverse model of the atmospheric transport, 2, Inversion of the transport of CO2 in the 1980s, J. Geophys. Res., 104, 1855518581, 1999b.
  • Liu, S. C., M. Trainer, F. C. Fehsenfeld, D. D. Parish, E. J. Williams, D. W. Fahey, G. Hubler, P. C. Murphy, Ozone production in the rural troposphere and the implication of regional and global ozone distributions, J. Geophys. Res., 92, 41914207, 1987.
  • Marchuk, G. I., Adjoint Equations and Analysis of Complex Systems, Kluwer Acad., Norwell, Mass., 1995.
  • Mckeen, S. A., M. Trainer, E. Y. Hsie, R. K. Tallamraju, S. C. Liu, On the indirect determination of atmospheric OH radical concentrations from reactive hydrocarbon measurements, J. Geophys. Res., 95, 74937500, 1990.
  • Pickering, K. E., A. M. Thompson, J. R. Scala, W.-K. Tao, J. Simpson, Ozone production potential following convective redistribution of biomass burning emissions, J. Atmos. Chem., 14, 297313, 1992a.
  • Pickering, K. E., A. M. Thompson, J. R. Scala, W.-K. Tao, R. R. Dickerson, J. Simpson, Free tropospheric ozone production following entrainment of urban plumes into deep convection, J. Geophys. Res., 97, 1798518000, 1992b.
  • Pudykiewicz, J. A., Application of adjoint tracer transport equations for evaluating source parameters, Atmos. Environ., 32, 30393050, 1998.
  • Rabier, F., P. Courtier, O. Talagrand, An application of adjoint models to sensitivity analysis, Contrib. Atmos. Phys., 65, 177192, 1992.
  • Ridley, B. A., E. L. Atlas, J. G. Walega, G. L. Kok, T. A. Staffelbach, J. P. Greenberg, F. E. Grahek, P. G. Hess, D. D. Montzka, Aircraft measurements made during the spring maximum of ozone over Hawaii: Peroxides, CO, O3, NOy, condensation nuclei, selected hydrocarbons, halocarbons, and alkyl nitrates between 0.5 and 9 km altitude, J. Geophys. Res., 102, 1893518961, 1997.
  • Robertson, A. W., Diagnosis of regional monthly anomalies using the adjoint method, part I, Temperature, J. Atmos. Sci., 49, 885905, 1992.
  • Roe, P. L., D. Sidilkover, Optimum positive linear schemes for advection in two and three dimensions, SIAM J. Numer. Anal., 29, 15421568, 1992.
  • Smolarkiewicz, P. K., A fully multidimensional positive definite advection algorithm with small implicit diffusion, J. Comput. Phys., 54, 325362, 1984.
  • Smolarkiewicz, P., L. G. Margolin, MPDATA: A finite-difference solver for geophysical flows, J. Comput. Phys., 1999.
  • Vukićević, T., Nonlinear and linear evolution of initial forecast errors, Mon. Weather Rev., 119, 16021611, 1991.
  • Vukićević, T., Optimal initial perturbations for two cases of extratropical cyclogenesis, Tellus, Ser. A, 50, 143166, 1998.
  • Vukićević, T., R. M. Errico, Linearization and adjoint of parameterized diabatic processes, Tellus, Ser. A, 45, 493510, 1993.
  • Vukićević, T., K. Raeder, Use of an adjoint model for finding triggers for Alpine lee cyclogenesis, Mon. Weather Rev., 123, 800816, 1995.
  • Wesely, M. L., Parameterization of surface resistance to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 12931304, 1989.
  • Zou, X., A. Barcilon, I. M. Navon, J. Whitaker, D. G. Caccuci, An adjoint sensitivity study of blocking in a two-layer isentropic model, Mon. Weather Rev., 121, 28332857, 1993.