SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. References

Near-infrared absorption cross sections and integrated absorption intensities of gas phase oxygen and nitrogen mixtures have been determined from laboratory measurements using a coolable multipass gas cell and Fourier transform spectroscopy. Spectra were recorded at instrument resolutions of 0.5 and 0.05 cm−1, between 2200–12,500 cm−1 (between 4.5 and 0.8 μm). Monomer and binary cross sections of the a1 Δg [LEFTWARDS ARROW] χ3 Σg (0,0) and (1,0) bands and underlying continuum absorptions of oxygen centered near 7,850 and 9,400 cm−1 (1.27 and 1.06 μm) were determined for mixtures of 21%, 50%, and 75% oxygen in nitrogen, from measurements at a total pressure of 100 kPa (1000 mbar) and temperatures of 200, 230, and 294 K. Where possible, comparisons are made between the results obtained from this work and those of previous studies.

References

  1. Top of page
  2. Abstract
  3. References
  • Arking, A., Absorption of solar energy in the atmosphere: Discrepancy between model and observations, Science, 273, 779782, 1996.
  • Badger, R. M., A. C. Wright, R. F. Whitlock, Absolute intensities of the discrete and continuous absorption bands of oxygen gas at 1.26 and 1.065 μ and the radiative lifetime of the 1Δg state of oxygen, J. Chem. Phys., 43, 43454350, 1965.
  • Ballard, J., K. Strong, J. Remedios, M. Page, W. B. Johnston, A coolable long path absorption cell for laboratory spectroscopic studies of gases, J. Quant. Spectrosc. Radiat. Transfer, 52, 677691, 1994.
  • Fouquart, Y., B. Bonnel, V. Ramaswamy, Intercomparing shortwave radiation codes for climate studies, J. Geophys. Res., 96, 89558968, 1991.
  • Gamache, R. R., A. Goldman, L. S. Rothman, Improved spectral parameters for the three most abundant isotopomers of the oxygen molecule, J. Quant. Spectrosc. Radiat. Transfer, 59, 495509, 1998.
  • Greenblatt, G. D., J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, Absorption measurements of oxygen between 330 and 1140 nm, J. Geophys. Res., 95, 1857718582, 1990.
  • Halthore, R. N., S. Nemesure, S. E. Schwartz, D. G. Imre, A. Berk, E. G. Dutton, M. H. Bergin, Models overestimate diffuse clear-sky surface irradiance: A case for excess atmospheric absorption, Geophys. Res. Lett., 25, 35913594, 1998.
  • Hsu, Y. T., Y. P. Lee, J. F. Ogilvie, Intensities of lines in the band a1Δg(ν′=0)-X3Σg(ν″=0) of O162 in absorption, Spectrochim. Acta Part A, 48, 12271230, 1992.
  • Kato, S., T. P Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, Uncertainties in modelled and measured clear-sky surface shortwave irradiances, J. Geophys. Res., 102, 25,88125,898, 1997.
  • Ketelaar, J. A. A., La transition triplet-singlet dans l'oxygène sous pression, Nuovo Cimento Suppl., 2ser. X, 763765, 1955.
  • Lafferty, W. J., A. M. Solodov, C. L. Lugez, G. T. Fraser, Rotational line strengths and self-pressure-broadening coefficients for the 1.27 μm α1Δg[LEFTWARDS ARROW]X3Σg v = 0–0 band of O2, Appl. Opt., 37, 22642270, 1998.
  • Lin, L. B., Y. P. Lee, J. F. Ogilvie, Linestrengths of the band a1Δg(ν′=0)-X3Σg(ν″=0) of O162, J. Quant. Spectrosc. Radiat. Transfer, 39, 375380, 1988.
  • Mills, I., T. Cvitas, K. Homann, N. Kallay, K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry2nd ed., Blackwell Sci., Malden, Mass., 1993.
  • Mlawer, E. J., S. A. Clough, P. D. Brown, T. M. Stephen, J. C. Landry, A. Goldman, F. J. Murcray, Observed atmospheric collision-induced absorption in near-infrared oxygen bands, J. Geophys. Res., 103, 38593863, 1998.
  • Newman, S. M., I. C. Lane, A. J. Orr-Ewing, Integrated absorption intensity and Einstein coefficients for the O2 α1Δg[LEFTWARDS ARROW]X3Σg- (0,0) transition: A comparison of cavity ring-down and high resolution Fourier transform spectroscopy with a long-path absorption cell, J. Chem. Phys., 110, 1074910757, 1999.
  • Newnham, D. A., Measurement of H2O Absorption Cross Sections for the Exploration of GOME Data: Progress Report 1Eur. Space Technol. Cent. (ESTEC) Contract 13312/9/NL/SFEur. Space Agency (ESA), Paris, France, 1999.
  • Newnham, D. A., J. Ballard, Visible absorption cross sections and integrated absorption intensities of molecular oxygen (O2 and O4), J. Geophys. Res., 103, 2880128815, 1998.
  • Schermaul, R., R. C. M. Learner, J. W. Brault, Laboratory spectroscopy of molecular oxygen for application in atmospheric remote sensing, European Symposium on Atmospheric Measurements from SpaceEur. Space Agency (ESA)/Eur. Space Technol. Cent. (ESTEC), Noordwijk, Netherlands, 1999.
  • Shapiro, M. M., H. P. Gush, The collision-induced fundamental and first overtone bands of oxygen and nitrogen, Can. J. Phys., 44, 949963, 1966.
  • Smith, K. M., D. A. Newnham, Near-infrared absorption spectroscopy of oxygen and nitrogen gas mixtures, Chem. Phys. Lett., 308, 16, 1999.
  • Solomon, S., R. W. Portmann, R. W. Sanders, J. S. Daniel, Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphere, J. Geophys. Res., 103, 38473858, 1998.
  • Strong, K., Spectral parameters of methane for the remote sounding of the Jovian atmosphere, Ph. D. thesis,Oxford University,Oxford, England,1992.
  • Thibault, F., V. Menoux, R. Le Doucen, L. Rosenmann, J.-M. Hartmann, Ch. Boulet, Infrared collision-induced absorption by O2 near 6.4 μm for atmospheric applications: Measurements and empirical modeling, Appl. Opt., 36, 563567, 1997.
  • Vallance Jones, A., A. W. Harrison, 1Δg-3Σg- O2 Infrared emission band in the twilight airglow spectrum, J. Atm. Terr. Phys., 13, 4560, 1958.
  • Vallance Jones, A., R. L. Gattinger, The seasonal variation and excitation mechanism of the 1.58 μ 1Δg-3Σg- twilight airglow band, Planet. Space Sci., 11, 961974, 1963.
  • Vigasin, A. A., On the nature of collision-induced absorption in gaseous homonuclear diatomics, J. Quant. Spectrosc. Radiat. Transfer, 56, 409422, 1996.
  • White, J. U., Long optical paths at large aperture, J. Opt. Soc. Am., 32, 285288, 1942.