SEARCH

SEARCH BY CITATION

References

  • Adams, J. B., Visible and near infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system, J. Geophys. Res., 79, 48294836, 1974.
  • Bancroft, G. M., R. G. Burns, Interpretation of the electronic spectra of pyroxenes, Am. Mineral., 52, 12781287, 1967.
  • Cameron, M., J. J. Papike, Structural and chemical variations in pyroxenes, Am. Mineral., 66, 150, 1981.
  • Christensen, P. R., S. T. Harrison, Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks, J. Geophys. Res., 98, 1981919834, 1993.
  • Christensen, P. R., H. H. Kieffer, S. C. Chase, D. D. Laporte, A thermal emission spectrometer for identification of surface composition from Earth orbit, Commercial Applications and Scientific Research Requirements for Thermal Infrared Observations of Terrestrial Surfaces, NASA-EOSAT Joint Report, 119132Earth Observ. Satell. Co., Lanham, Md., 1986.
  • Christensen, P. R., et al., Thermal Emission Spectrometer Experiment: The Mars Observer Mission, J. Geophys. Res., 97, 77197734, 1992.
  • Christensen, P. R., J. L. Bandfield, M. D. Smith, andV. E. Hamilton, Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data,J. Geophys. Res., 105(E4), 2000 (a).
  • Christensen, P. R., J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. D. Lane, J. L. Piatek, S. W. Ruff, andW. L. Stefanov, A thermal emission spectral library of rock-forming minerals,J. Geophys. Res., 105(E4), 2000 (b).
  • Cloutis, E. A., M. J. Gaffey, Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationship to geothermometry, J. Geophys. Res., 96, 2280922826, 1991.
  • Conel, J. E., Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums, J. Geophys. Res., 74, 16161634, 1969.
  • Crown, D. A., C. M. Pieters, Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra, Icarus, 72, 492506, 1987.
  • Deer, W. A., R. A. Howie, J. Zussman, Rock-Forming Minerals, 2A, Single-Chain Silicates2nd ed., 668, John Wiley, New York, 1978.
  • Deer, W. A., R. A. Howie, J. Zussman, An Introduction to the Rock-Forming Minerals2nd ed., 696, Addison-Wesley-Longman, Reading, Mass., 1992.
  • Droop, G. T. R., A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Min. Mag., 51, 431435, 1987.
  • Estep, P. A., Infrared spectra of lunar, meteoritic and terrestrial pyroxenes, Geol. Soc. Am. Abstr. Programs, 4, 500, 1972.
  • Estep, P. A., J. J. Kovach, C. Karr Jr., Infrared vibrational spectroscopic studies of minerals from Apollo 11 and Apollo 12 lunar samples, Proc. Lunar Sci. Conf., 2nd, 3, 21372151, 1971.
  • Estep, P. A., J. J. Kovach, P. Waldstein, C. Karr Jr., Infrared and Raman spectroscopic studies of structural variations in minerals from Apollo 11, 12, 14, and 15 samples, Geochim. Cosmochim. Acta Suppl. 3, 3, 30473067, 1972.
  • Evans, B. J., S. Ghose, S. Hafner, Hyperfine splitting of 57Fe and Mg-Fe order-disorder in orthopyroxene (MgSiO3-FeSiO3 solid solutions), J. Geol., 75, 306322, 1967.
  • Gaskell, P. H., The vibrational spectra of silicates, I, Phys. Chem. Glasses, 8, 6980, 1967.
  • Goldman, D. S., G. R. Rossman, Determination of quantitative cation distribution in orthopyroxenes from electronic absorption spectra, Phys. Chem. Min., 4, 4353, 1979.
  • Hamilton, V. E., Linear deconvolution of mafic igneous rock spectra and implications for interpretation of TES data, Lunar and Planet. Sci. [CD-ROM], XXXabstract 1825, 1999.
  • Hamilton, V. E., andP. R. Christensen, Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy,J. Geophys. Res., 105(E4), 2000.
  • Hapke, B., Theory of Reflectance and Emittance Spectroscopy, 455, Cambridge Univ. Press, New York, 1993.
  • Hawthorne, F. C., H. D. Grundy, Refinement of the crystal structure of LiScSi2O6 and structural variations in alkali pyroxenes, Can. Min., 15, 5058, 1977.
  • Henry, R. L., The transmission of powder films in the infrared, J. Opt. Soc. Am., 38, 775789, 1948.
  • Johnson, P. E., M. O. Smith, S. Taylor-George, J. B. Adams, A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures, J. Geophys. Res., 88, 35573561, 1983.
  • Johnson, P. E., M. O. Smith, J. B. Adams, Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra, J. Geophys. Res., 97, 26492657, 1992.
  • Klein, C., C. S. Hurlbut Jr., Manual of Mineralogy21st ed., 681, John Wiley, New York, 1993.
  • Launer, P. J., Regularities in the infrared absorption spectra of silicate minerals, Am. Mineral., 37, 764784, 1952.
  • Lazarev, A. N., Vibrational Spectra and Structure of Silicates, 302, Consult. Bur., New York, 1972.
  • Lazarev, A. N., T. F. Tenisheva, The vibrational spectra of silicates, II, Infrared absorption spectra of silicates and germanates with chain anions, Opt. Spectrom., 10, 3740, 1961a.
  • Lazarev, A. N., T. F. Tenisheva, The vibrational spectra of silicates, III, Infrared spectra of the pyroxenoids and other chain metasilicates, Opt. Spectrom., 11, 316317, 1961b.
  • Logan, L. M., G. R. Hunt, J. W. Salisbury, S. R. Balsamo, Compositional implications of Christiansen frequency maximums for infrared remote sensing applications, J. Geophys. Res., 78, 49835003, 1973.
  • Morimoto, N., Nomenclature of pyroxenes, Can. Mineral., 27, 143156, 1989.
  • Mustard, J. F., C. M. Pieters, Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra, J. Geophys. Res., 94, 1361913634, 1989.
  • Omori, K., Analysis of the infrared absorption spectrum of diopside, Am. Mineral., 56, 16071616, 1971.
  • Palluconi, F. D., G. R. Meeks, Thermal infrared multispectral scanner (TIMS): An investigator's guide to TIMS data, JPL Publ., 85-32, 14, 1985.
  • Papike, J. J., K. L. Cameron, K. Baldwin, Amphiboles and pyroxenes: Characterization of Other than quadrilateral components and estimates of ferric iron from microprobe data, Geol. Soc. Am. Abstr. Programs, 6, 10531054, 1974.
  • Ramsey, M. S., P. R. Christensen, Mineral abundance determination: Quantitative deconvolution of thermal emission spectra, J. Geophys. Res., 103, 577596, 1998.
  • Rossman, G. R., Lavender jade: The optical spectrum of Fe3+ and Fe2+-Fe3+ intervalence charge transfer in jadeite from Burma, Am. Mineral., 59, 868870, 1974.
  • Ruff, S. W., P. R. Christensen, P. W. Barbera, D. L. Anderson, Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration, J. Geophys. Res., 102, 1489914913, 1997.
  • Rutstein, M. S., W. B. White, Vibrational spectra of high-calcium pyroxenes and pyroxenoids, Am. Mineral., 56, 877887, 1971.
  • Ryall, W. R., I. M. Threadgold, Evidence for [(SiO3)5]x type chains in inesite as shown by X-ray and infrared absorption studies, Am. Mineral., 51, 754761, 1966.
  • Sabol, D. E., J. B. Adams, M. O. Smith, Quantitative subpixel spectral detection of targets in multispectral images, J. Geophys. Res., 97, 26592672, 1992.
  • Saksena, B. D., Infra-red absorption studies of some silicate structures, Trans. Faraday Soc., 57, 242258, 1961.
  • Salisbury, J. W., Mid-infrared spectroscopy: Laboratory data, Remote Geochemical Analysis: Elemental and Mineralogical CompositionC. M. Pieters, P. A. J. Englert, 594, Cambridge Univ. Press, New York, 1993.
  • Sunshine, J. M., C. M. Pieters, S. F. Pratt, Deconvolution of mineral absorption bands: An improved approach, J. Geophys. Res., 95, 69556966, 1990.
  • Thomson, J. L., J. W. Salisbury, The mid-infrared reflectance of mineral mixtures (7–14 μm), Remote Sens. Environ., 45, 113, 1993.
  • Virgo, D., S. Hafner, Fe2+-Mg order-disorder in natural orthopyroxenes, Am. Mineral., 55, 201223, 1970.