• Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185200, 1994.
  • Berenger, J. P., Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 127, 363379, 1996.
  • Fettweis, A., Wave digital filters: Theory and practice, Proc. IEEE, 74, 270327, 1986.
  • Fettweis, A., Multidimensional wave digital filters for discrete-time modelling of Maxwell's equations, Int. J. Numer. Modell., 5, 183201, 1992.
  • Fettweis, A., G. Nitsche, Numerical integration of partial differential equations using principles of multi-dimensional wave digital filters, J. VLSI Signal Process., 3, 724, 1991a.
  • Fettweis, A., G. Nitsche, Transformation approach to numerically integrating PDEs by means of WDF principles, Multidimensional Syst. Signal Process., 2, 127159, 1991b.
  • Ikuno, H., Y. Naka, A. Yata, M. Nishimoto, FD-TD method based on the principles of the wave digital filters and evaluation of its numerical errorsSino-Japanese Joint Meeting on Optical Fibre Science and Electromagnetics TheoryChina Institute of Communications and the Institute of Electrical Engineers of JapanWuhan, China, 1997.
  • Joannopoulos, J. D., P. R. Villeneuve, S. Fan, Photonic crystals: Putting a new twist on light, Nature, 386, 143149, 1997.
  • Johnson, D. E., J. L. Hilburn, J. R. Johnson, Basic Electric Circuit Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1984.
  • Kumar, M., J. T. Boyd, H. E. Jackson, B. L. Weiss, Birefringent properties of GaAlAs multiple quantum well planar optical waveguides, IEEE J. Quantum Electron., 28, 16781688, 1992.
  • Li, Y. P., C. H. Henry, Silica-based optical integrated circuits, IEE Proc. Part J Optoelectron., 143, 263280, 1996.
  • Lin, S. Y., E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal, Science, 282, 274276, 1998.
  • Lynch, D. R., K. D. Paulsen, Origin of vector parasitics in numerical Maxwell solution, IEEE Trans. Microwave Theory Tech., 39, 383394, 1991.
  • Martin, O. J. F., C. Girard, A. Dereux, Generalized field propagator for electromagnetic scattering and light confinement, Phys. Rev. Lett., 74, 526529, 1995.
  • May, M. P., A. Taflove, J. Baron, FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads, IEEE Trans. Microwave Theory Tech., 42, 15141523, 1994.
  • Naka, Y., H. Ikuno, M. Nishimoto, A. Yata, FD-TD method with PMLs ABC based on the principles of multidimensional wave digital filters for discrete-time modelling of Maxwell's equations, IEICE Trans. Electron., E81-C, 305314, 1998.
  • Smith, R. E., L. A. Molter, M. Dutta, Evaluation of refractive index approximations used for mode determination in multiple quantum well slab waveguides, IEEE J. Quantum Electron., 27, 11191122, 1991.
  • Taflove, A., Computational Electrodynamics:The Finite-Difference Time-Domain Method, Artech House, Norwood, Mass., 1995.
  • Wang, J., H. Guo, Resonant tunneling through a bend in a quantum wire, Appl. Phys. Lett., 60, 654656, 1992.
  • Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 58, 20592062, 1987.
  • Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302307, 1966.
  • Ziolkowski, R. W., J. B. Judkins, Full vector Maxwell equation modeling of the self-focusing of ultrafast optical pulses in a nonlinear Kerr medium exhibiting a finite response time, J. Opt. Soc. Am. B Opt. Phys., 10, 186198, 1993.