SEARCH

SEARCH BY CITATION

References

  • Burnside, W. D., C. L. Yu, R. J. Marhefka, A technique to combine the geometrical theory of diffraction and the moment method, IEEE Trans. Antennas Propag., 23, 551558, 1975.
  • Capolino, F., M. Albani, A. Neto, S. Maci, L. B. Felsen, Vertex-diffracted Floquet waves from a corner array of dipolesInternational Conference on Electromagnetics in Advanced ApplicationsTorino, ItalySept. 15–18, 1997.
  • Capolino, F., M. Albani, S. Maci, L. B. Felsen, Floquet wave diffraction theory for truncated dipole arrays: Propagating and evanescent spectraURSI Commission B 1998 Electromagnetic Theory SymposiumThessaloniki, GreeceMay, 1998.
  • Carin, L., L. B. Felsen, Time harmonic and transient scattering by finite periodic flat strip arrays: Hybrid (Ray)-(Floquet mode)-(MoM) algorithm and its interpretation, IEEE Trans. Antennas Propag., 41, 412421, 1993.
  • Carin, L., L. B. Felsen, T.-T. Hsu, High-frequency fields excited by truncated arrays of nonuniformly distributed filamentary scatterers on an infinite di-electric grounded slab: Parameterizing leaky mode-Floquet mode interaction, IEEE Trans. Antennas Propag., 44, 111, 1996.
  • Çivi, Ö. A., P. H. Pathak, H.-T. Chou, A hybrid UTD MoM for efficient analysis of EM radiation/ scattering from large finite planar arraysURSI Commission B 1998 Electromagnetic Theory SymposiumThessaloniki, GreeceMay, 1998a.
  • Çivi, Ö. A., P. H. Pathak, H.-T. Chou, An efficient hybrid UTD-MoM analysis of radiation/ scattering from large truncated periodic arraysInternational IEEE AP-S/National Radio Science MeetingAtlanta, Ga.June, 1998b.
  • Felsen, L. B., L. Carin, Diffraction theory of frequency- and time-domain scattering by weakly aperiodic truncated thin-wire gratings, J. Opt. Soc. Am. A Opt. Image Sci., 11, 12911306, 1994.
  • Harrington, R. F., Field Computation by Moment Methods, IEEE Press, Piscataway, N.J., 1993.
  • Hill, K. C., A UTD solution to the EM scattering by the vertex of a perfectly conducting plane angular sector, Ph.D. dissertation,The Ohio State Univ.,Columbus,1990.
  • Ishimaru, A., R. J. Coe, G. E. Miller, W. P. Geren, Finite periodic approach to large scanning array problems, IEEE Trans. Antennas Propag., 33, 12131220, 1985.
  • Keller, J. B., Geometrical theory of diffraction, J. Opt. Soc. Am., 52, 116130, 1962.
  • King, H. E., Mutual impedance of unequal length antennas in echelon, IRE Trans. Antennas Propag., 5, 306312, 1957.
  • Kouyoumjian, R. G., P. H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE, 62, 14481461, 1974.
  • Neto, A., S. Maci, G. Vecchi, M. Biagiotti, Full wave analysis of a large rectangular array of slotsInternational IEEE AP-S/National Radio Science MeetingAtlanta, Ga.June, 1998.
  • Pathak, P. H., High frequenecy techniques for antenna analysis, Proc. IEEE, 80, 4465, 1992.
  • Shubert, K. A., B. A. Munk, Matching properties of arbitrarily large dielectric covered phased arrays, IEEE Trans. Antennas Propag., 31, 5459, 1983.
  • Skrivervik, A. K., J. R. Mosig, Analysis of finite phased arrays of microstrip patches, IEEE Trans. Antennas Propag., 41, 11051113, 1993.
  • Srikanth, S., P. H. Pathak, C. W. Chuang, Hybrid UTD-MM analysis of the scattering by a perfectly-conducting semi-circular cylinder, IEEE Trans. Antennas Propag., 34, 12501257, 1986.
  • Thiele, G. A., Overview of selected hybrid methods in radiating system analysis, Proc. IEEE, 80, 6678, 1992.
  • Thiele, G. A., T. H. Newhouse, A hybrid technique for combining moment methods with the geometrical theory of diffraction, IEEE Trans. Antennas Propag., 23, 6269, 1975.