SEARCH

SEARCH BY CITATION

References

  • Baker, C. T. H., The Numerical Treatment of Integral Equations, Clarendon, Oxford, England, 1977.
  • Borup, D. T., O. P. Gandhi, Fast-fourier-transform method for calculation of SAR distributions in finely discretized inhomogeneous models of biological bodies, IEEE Trans. Microwave Theory Tech., MTT-324, 355360, 1984.
  • Borup, D. T., O. P. Gandhi, Calculation of high resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method, IEEE Trans. Microwave Theory Tech., MTT-335, 417419, 1985.
  • Cervený, V., M. M. Popov, I. Ps̆enc̆ik, Computation of wave fields in inhomogeneous media: Gaussian beam approach, Geophys. J. R. Astron. Soc., 70, 109128, 1982.
  • Chew, W. C., Y. M. Wang, Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method, IEEE Trans. Medical Imaging, 9, 218225, 1990.
  • Devaney, A. J., Inverse-scattering theory within the Rytov approximation, Opt. Lett., 6, 374376, 1981.
  • Devaney, A. J., A filtered backpropagation algorithm for diffraction tomography, Ultrason. Imaging, 4, 336360, 1982.
  • Devaney, A. J., A computer simulation study of diffraction tomography, IEEE Trans. Biomed. Eng., 30, 377386, 1983.
  • Harrington, R. F., Field Computation by Moment Methods, Kreiger, Melbourne, Fla., 1985.
  • Jensen, F. B., W. A. Kuperman, M. B. Porter, H. Schmidt, Computational Ocean AcousticsChap. 3, 149171, AIP Press, New York, 1994.
  • Keller, J. B., Accuracy and validity of the Born and Rytov approximations, J. Opt. Soc. Am., 59, 10031004, 1969.
  • Kleinman, R. E., P. M. vanden Berg, A modified gradient method for two-dimensional problems in tomography, J. Comput. Appl. Math., 42, 1735, 1992.
  • Kleinman, R. E., P. M. vanden Berg, An extended range-modified gradient technique for profile inversion, Radio Sci., 28, 877884, 1993.
  • Lobel, P., R. E. Kleinman, C. Pichot, L. Blanc-Feraud, M. Barlaud, Conjugate gradient method for solving inverse scattering with experimental data, IEEE Antennas Propag. Mag., 383, 4851, 1996.
  • Lobel, P., C. Pichot, L. BlancFeraud, M. Barlaud, Microwave imaging: Reconstructions from experimental data using conjugate gradient and enhancement by edge-preserving regularization, Int. J. Imaging Syst. Technol., 8, 337342, 1997.
  • Mallat, S. G., Z. Zhang, Matching pursuits with a wave-based dictionary, IEEE Trans. Signal Processing, 45, 29122927, 1997.
  • Porter, M. B., H. P. Bucker, Gaussian beam tracing for computing ocean acoustic fields, J. Acoust. Soc. Am., 82, 13491359, 1987.
  • Rao, B., Imaging algorithms for electrically large targets, Ph.D dissertation,Duke Univ.,Durham, N. C.,1999.
  • Rao, B., L. Carin, A hybrid (parabolic equation)-(Gaussian beam) algorithm for wave propagation through large inhomogeneous regions, IEEE Trans. Antennas Propag., AP-46, 700709, 1998.
  • Rao, B., L. Carin, Beam-tracing-based inverse scattering for general aperture antennas, J. Opt. Soc. Am. A., Opt. Image Sci., 16, 22192231, 1999.
  • Reilly, M. H., E. L. Strobel, Efficient ray tracing through a realistic ionosphere, Radio Sci., 23, 247256, 1988.
  • Roger, A., Newton-Kantorovitch algorithm applied to an electromagnetic inverse scattering problem, IEEE Trans. Antennas Propag., 29, 232238, 1981.
  • Song, J. M., W. C. Chew, Multilevel fast-multipole algorithm for solving combined field integral-equations of electromagnetic scattering, Microwave Opt. Technol. Lett., 10, 1419, 1995.
  • Tabbara, W., B. Duchene, C. Pichot, D. Lesselier, L. Chomeloux, N. Joachimowicz, Diffraction tomography: Contribution to the analysis of applications in microwaves and ultrasonics, Inverse Probl., 4, 305331, 1988.
  • Tijhuis, A. J., Iterative determination of permittivity and conductivity profiles of a dielectric slab in time domain, IEEE Trans. Antennas Propag., 29, 239245, 1981.
  • Tikhonov, A. N., V. Y. Arsenin, Solution of Ill-Posed Problems, V. H. Winston, Washington, D.C., 1977.
  • vanden Berg, P. M., R. E. Kleinman, A total variation enhanced modified gradient algorithm for profile reconstruction, Inverse Probl., 11, L5L10, 1995.
  • Wang, Y. M., W. C. Chew, An iterative solution of the two-dimensional electromagnetic inverse scattering problem, Int. J. Imaging Syst. Technol., 1, 100108, 1989.
  • Weedon, W. H., W. C. Chew, Time-domain inverse scattering using the local shape function method, Inverse Probl., 9, 551564, 1993.