SEARCH

SEARCH BY CITATION

References

  • Awaka, J., A three-dimensional rain cell model for the study of interference due to hydrometeor scattering, J. Commun. Res. Lab., 36147, 1344, 1989.
  • Battan, L. J., Radar Observation of the Atmosphere, Univ. of Chicago Press, Chicago, Ill., 1973.
  • Capsoni, C., et al., Radar data analysis for propagation studiesFinal Rep. ESTEC 4680/81/NL/MS(SC)Eur. Space Agency Res. and Technol., Noordwijk, Netherlands, 1983.
  • Capsoni, C., F. Fedi, A. Paraboni, A comprehensive meteorologically oriented methodology for the prediction of wave propagation parameters in telecommunication applications beyond 10 GHz, Radio Sci., 223, 387393, 1987a.
  • Capsoni, C., F. Fedi, C. Magistroni, A. Paraboni, A. Pawlina, Data and theory for a new model of the horizontal structure of rain cells for propagation applications, Radio Sci., 223, 395404, 1987b.
  • Cox, D. C., An overview of the bell laboratories 19 and 28 GHz COMSTAR beacon propagation experiments, Bell Syst. Tech. J., 575, 12311255, 1978.
  • Crane, R. K., Electromagnetic Wave Propagation Through Rain, Wiley Ser. Remote Sens., John Wiley, New York, 1996.
  • Goldhirsh, J., A review on the application of nonattenuating frequency radars for estimating rain attenuation and space-diversity performance, IEEE Trans. Geosci. Electron., GE-174, 218239, 1979.
  • Goldhirsh, J., Slant path fade and rainrate statistics associated with the COMSTAR beacon at 28.56 GHz for Wallops Island, Virginia, over a three-year period, IEEE Trans. Antennas Propag., AP-302, 191198, 1982.
  • Goldhirsh, J., B. H. Musiani, Rain cell size statistics derived from radar observations at Wallops Island, Virginia, IEEE Trans. Geosci. Remote Sens., GE-24, 947954, 1986.
  • Goldhirsh, J., B. H. Musiani, Dimension statistics of rain cell cores and associated rainrate isopleths derived from radar measurements in the mid-Atlantic coast of the United States, IEEE Trans. Geosci. Remote Sens., 301, 2837, 1992.
  • Goldhirsh, J., B. H. Musiani, W. J. Vogel, Cumulative fade distributions and frequency scaling techniques at 20 GHz from the Advanced Communications Technology Satellite and at 12 GHz from the Digital Satellite System, Proc. IEEE, 856, 910916, 1997.
  • Gunn, K. L. S., T. W. R. East, The microwave properties of precipitation particles, Q. J. R. Meteorol. Soc., 80, 522545, 1954.
  • , International Telecommunication Union-Radiocommunication (ITU-R), Characteristics of precipitation for propagation modellingRecomm. ITU-R PN. 837-1Int. Telecommun. Union, Geneva, 1997a.
  • , International Telecommunication Union-Radiocommunication (ITU-R), Specific attenuation model for rain for use in prediction methodsRecomm. ITU-R P.838Int. Telecommun. Union, Geneva, 1997b.
  • , International Telecommunication Union-Radiocommunication (ITU-R), Rain height model for prediction methodsRecomm. ITU-R P. 839-1Int. Telecommun. Union, Geneva, 1997c.
  • , Jandel Scientific, TableCurve 2D, Windows V2.00, AISN Software, Chicago, Ill., 1994.
  • Konrad, T. J., Statistical models of summer rainshowers derived from fine-scale radar observations, J. Appl. Meteorol., 172, 171188, 1978.
  • Marshall, J. S., W. M. K. Palmer, The distribution of raindrops with size, J. Meteorol., 5, 165166, 1948.
  • Wexler, R., D. Atlas, Radar reflectivity and attenuation of rain, J. Appl. Meteorol., 2, 276280, 1963.