Basis functions that are used to model surface electric current densities in the electric field integral equations of computational electromagnetics are analyzed with respect to how well they model the charge distribution, in addition to the current. This analysis is carried out with the help of the topological properties of open and closed surfaces meshed into networks of triangles and quadrangles. The need for current basis functions to properly model the charge distribution is demonstrated by several examples. In some of these examples, the basis functions seem to be perfectly legitimate when only the current distribution is considered, but they fail to deliver a correct solution of the electromagnetic problem, since they are not capable of properly modeling the charge distribution on some surfaces. Although the idea of proper modeling of the charge distribution by the current basis functions is easy to accept and can even be claimed well known, the contrary uses encountered in the literature have been the motivation behind the investigation reported in this paper.