• Abramowitz, M., I. A. Stegun, Handbook of Mathematical Functions, Dover, Mineola, N.Y., 1970.
  • Agnon, Y., M. Stiassnie, Remote sensing of the roughness of a fractal sea surface, J. Geophys. Res., 96C7, 12,77312,779, 1991.
  • Austin, T. R., A. W. England, G. H. Wakefield, Special problems in the estimation of power-law spectra as applied to topographical modeling, IEEE Trans. Geosci. Remote Sens., 324, 928939, 1994.
  • Beckmann, P., A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces, Artech House, Norwood, Mass., 1987.
  • Berry, M. V., T. M. Blackwell, Diffractal echoes, J. Phys. A Math. Gen., 14, 31013110, 1981.
  • Brown, S. R., C. H. Scholz, Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res., 90B14, 12,57512,582, 1985.
  • Falconer, K., Fractal Geometry, John Wiley, New York, 1990.
  • Flandrin, P., On the spectrum of fractional Brownian motions, IEEE Trans. Inf Theory, 351, 197199, 1989.
  • Franceschetti, G., M. Migliaccio, D. Riccio, An electromagnetic fractal-based model for the study of fading, Radio Sci., 31, 17491759, 1996.
  • Franceschetti, G., A. Iodice, M. Migliaccio, D. Riccio, Backscattering from an fBm surface, Proceedings of the U.R.S.I. Electromagnetic Theory Symposium, 692694Int. Union of Radio Sci., Gent, Belgium, 1998.
  • Franceschetti, G., A. Iodice, M. Migliaccio, D. Riccio, Scattering from natural rough surfaces modelled by fractional Brownian motion two-dimensional processes, IEEE Trans. Antennas Propag., 1999.
  • Fung, A. K., Microwave Scattering and Emission: Models and Their Applications, Artech House, Norwood, Mass., 1994.
  • Fung, A. K., Z. Li, K. S. Chen, Backscattering from a randomly rough dielectric surface, IEEE Trans. Geosci. Remote Sens., 302, 356369, 1992.
  • Glazman, R. E., Near-nadir radar backscatter from a well-developed sea, Radio Sci., 25, 12111219, 1990.
  • Gradshteyn, I. S., I. M. Ryzhik, Table of Integrals, Series and Products, Academic, San Diego, Calif., 1980.
  • Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic, San Diego, Calif., 1993.
  • Jaggard, D. L., On fractal electrodynamics, Recent Advances in Electromagnetic TheoryH. N. Kritikos, D. L. Jaggard, 183223, Springer-Verlag, New York, 1990.
  • Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.
  • Oh, Y., K. Sarabandi, F. T. Ulaby, An empirical model and an inversion technique for radar scattering from bare soil surfaces, IEEE Trans. Geosci. Remote Sens., 302, 370381, 1992.
  • Phillips, O. M., The equilibrium range in the spectrum of wind-generated waves, J. Fluid Mech., 4, 426434, 1958.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran2nd ed., Cambridge Univ. Press, New York, 1994.
  • Tsang, L., J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing, John Wiley, New York, 1985.
  • Ulaby, F. T., R. K. Moore, A. K. Fung, Microwave Remote Sensing, II, Addison-Wesley, Reading, Mass., 1982.
  • vanZyl, J. J., C. F. Burnette, T. G. Farr, Inference of surface power spectra from inversion of multifrequency polarimetric radar data, Geophys. Res. Lett., 18, 17871790, 1991.
  • Voss, R. F., Random fractal forgeries, Fundamental Algorithms for Computer GraphicsR. A. Earnshaw, 805835, Springer Verlag, New York, 1985.